
Efficient Feature Subset Selection and Subset Size Optimization 1

Efficient Feature Subset Selection and Subset Size Optimization

Petr Somol, Jana Novoviˇcová and Pavel Pudil

0

Efficient Feature Subset Selection
and Subset Size Optimization

Petr Somol, Jana Novovičová and Pavel Pudil
Institute of Information Theory and Automation
of the Academy of Sciences of the Czech Republic

1. Introduction

A broad class of decision-making problems can be solved by learning approach. This can be
a feasible alternative when neither an analytical solution exists nor the mathematical model
can be constructed. In these cases the required knowledge can be gained from the past data
which form the so-called learning or training set. Then the formal apparatus of statistical
pattern recognition can be used to learn the decision-making. The first and essential step of
statistical pattern recognition is to solve the problem of feature selection (FS) or more generally
dimensionality reduction (DR).
The problem of feature selection in statistical pattern recognition will be of primary focus in
this chapter. The problem fits in the wider context of dimensionality reduction (Section 2)
which can be accomplished either by a linear or nonlinear mapping from the measurement
space to a lower dimensional feature space, or by measurement subset selection. This chapter
will focus on the latter (Section 3). The main aspects of the problem as well as the choice of the
right feature selection tools will be discussed (Sections 3.1 to 3.3). Several optimization tech-
niques will be reviewed, with emphasis put to the framework of sequential selection methods
(Section 4). Related topics of recent interest will be also addressed, including the problem of
subset size determination (Section 4.7), search acceleration through hybrid algorithms (Sec-
tion 5), and the problem of feature selection stability and feature over-selection (Section 6).

2. Dimensionality Reduction

The following elementary notation will be followed throughout the chapter. We shall use the
term “pattern” to denote the D-dimensional data vector x ∈ X ⊆ RD, the components of
which are the measurements of the features characterizing an object. We also refer to x as the
feature vector. Let Y = { f1, · · · , f|Y|} be the set of D = |Y| features, where | · | denotes the size
(cardinality). The features are the variables specified by the investigator. Following the statis-
tical approach to pattern recognition, we assume that a pattern x is to be classified into one of
a finite set Ω of C different classes. A pattern x belonging to class ω ∈ Ω is viewed as an ob-
servation of a random vector drawn randomly according to the class-conditional probability
density function and the respective a priori probability of class ω.
One of the fundamental problems in pattern recognition is representing patterns in the re-
duced number of dimensions. In most of practical cases the pattern descriptor space dimen-
sionality is rather high. It follows from the fact that in the design phase it is too difficult or

1

impossible to evaluate directly the “usefulness” of particular input. Thus it is important to
initially include all the “reasonable” descriptors the designer can think of and to reduce the
set later on. Obviously, information missing in the original measurement set cannot be later
substituted. Dimensionality reduction refers to the task of finding low dimensional repre-
sentations for high-dimensional data. Dimensionality reduction is an important step in data
preprocessing in pattern recognition and machine learning applications. It is sometimes the
case that such tasks as classification or approximation of the data represented by so called
feature vectors, can be carried out in the reduced space more accurately than in the original
space.

2.1 DR Categorization According to Nature of the Resulting Features
There are two main distinct ways of viewing DR according to the nature of the resulting
features:

• DR by feature selection (FS)
• DR by feature extraction (FE).

The FS approach does not attempt to generate new features, but to select the "best" ones from
the original set of features. (Note: In some research fields, e.g., in image analysis, the term fea-
ture selection may be interpreted as feature extraction. It will not be the case in this chapter.)
Depending on the outcome of a FS procedure, the result can be either a set of weighting-
scoring, a ranking or a subset of features. The FE approach defines a new feature vector space
in which each new feature is obtained by combinations or transformations of the original fea-
tures. FS leads to savings in measurements cost since some of the features are discarded and
the selected features retain their original physical interpretation. In addition, the retained fea-
tures may be important for understanding the physical process that generates the feature vec-
tors. On the other hand, transformed features generated by feature extraction may provide a
better discriminative ability than the best subset of given features, but these new features may
not have a clear physical meaning.

2.2 DR Categorization According to the Aim
DR can be alternatively divided according to the aim of the reduction:

• DR for optimal data representation
• DR for classification.

The first aims to preserve the topological structure of data in a lower-dimensional space as
much as possible, the second one aims to enhance the subset discriminatory power. Although
the same tools may be often used for both purposes, caution is needed. An example is PCA,
one of the primary tools for representing data in lower-dimensional space, which may easily
discard important information if used for DR for classification. In the sequel we shall concen-
trate on the feature subset selection problem only, with classification being the primary aim.
For a broader overview of the subject see, e.g., Duda et al. (2000), McLachlan (2004), Ripley
(2005), Theodoridis et al. (2006), Webb (2002).

3. Feature Subset Selection

Given a set Y of |Y| features, let us denote Xd the set of all possible subsets of size d, where
d represents the desired number of features. Let J(X) be a criterion function that evaluates
feature subset X ∈ Xd. Without any loss of generality, let us consider a higher value of J

to indicate a better feature subset. Then the feature selection problem can be formulated as
follows: Find the subset X̃d for which

J(X̃d) = max
X∈Xd

J(X). (1)

Assuming that a suitable criterion function has been chosen to evaluate the effectiveness of
feature subsets, feature selection is reduced to a search problem that detects an optimal feature
subset based on the selected measure. Note that the choice of d may be a complex issue
depending on problem characteristics, unless the d value can be optimized as part of the search
process.
One particular property of feature selection criterion, the monotonicity property, is required
specifically in certain optimal FS methods. Assuming we have two subsets S1 and S2 of feature
set Y and a criterion J that evaluates each subset Si. The monotonicity condition requires the
following:

S1 ⊂ S2 ⇒ J(S1) ≤ J(S2). (2)

That is, evaluating the feature selection criterion on a subset of features of a given set yields a
smaller value of the feature selection criterion.

3.1 FS Categorization With Respect to Optimality
Feature subset selection methods can be split into basic families:

• Optimal methods: These include, e.g., exhaustive search methods which are feasible for
only small size problems and accelerated methods, mostly built upon the Branch &
Bound principle (Somol et al. (2004)). All optimal methods can be expected consider-
ably slow for problems of high dimensionality.

• Sub-optimal methods: They essentially trade the optimality of the selected subset for com-
putational efficiency. They include, e.g., Best Individual Features, Random (Las Vegas)
methods, Sequential Forward and Backward Selection, Plus-l-Take Away-r, their gener-
alized versions, genetic algorithms, and particularly the Floating and Oscillating algo-
rithms (Devijver et al. (1982), Pudil et al. (1994), Somol et al. (2000), Somol et al. (2008b)).

Although the exhaustive search guarantees the optimality of a solution, in many realistic prob-
lems it is computationally prohibitive. The well known Branch and Bound (B&B) algorithm
guarantees to select an optimal feature subset of size d without involving explicit evaluation
of all the possible combinations of d measurements. However, the algorithm is applicable only
under the assumption that the feature selection criterion used satisfies the monotonicity condi-
tion (2). This assumption precludes the use of classifier error rate as the criterion (cf. wrappers,
Kohavi et al. (1997b)). This is an important drawback as the error rate can be considered su-
perior to other criteria, Siedlecki et al. (1993), Kohavi et al. (1997b), Tsamardinos et al. (2003).
Moreover, all optimal algorithms become computationally prohibitive for problems of high
dimensionality. In practice, therefore, one has to rely on computationally feasible procedures
which perform the search quickly but may yield sub-optimal results. A comprehensive list of
sub-optimal procedures can be found, e.g., in books Devijver et al. (1982), Fukunaga (1990),
Webb (2002), Theodoridis et al. (2006). A comparative taxonomy can be found, e.g., in Blum
et al. (1997), Ferri et al. (1994), Guyon et al. (2003), Jain et al. (1997), Jain et al. (2000), Yusta
(2009), Kudo et al. (2000), Liu et al. (2005), Salappa et al. (2007), Vafaie et al. (1994) or Yang
et al. (1998). Our own research and experience with FS has led us to the conclusion that there
exists no unique generally applicable approach to the problem. Some approaches are more suitable

Efficient Feature Subset Selection and Subset Size Optimization 3

impossible to evaluate directly the “usefulness” of particular input. Thus it is important to
initially include all the “reasonable” descriptors the designer can think of and to reduce the
set later on. Obviously, information missing in the original measurement set cannot be later
substituted. Dimensionality reduction refers to the task of finding low dimensional repre-
sentations for high-dimensional data. Dimensionality reduction is an important step in data
preprocessing in pattern recognition and machine learning applications. It is sometimes the
case that such tasks as classification or approximation of the data represented by so called
feature vectors, can be carried out in the reduced space more accurately than in the original
space.

2.1 DR Categorization According to Nature of the Resulting Features
There are two main distinct ways of viewing DR according to the nature of the resulting
features:

• DR by feature selection (FS)
• DR by feature extraction (FE).

The FS approach does not attempt to generate new features, but to select the "best" ones from
the original set of features. (Note: In some research fields, e.g., in image analysis, the term fea-
ture selection may be interpreted as feature extraction. It will not be the case in this chapter.)
Depending on the outcome of a FS procedure, the result can be either a set of weighting-
scoring, a ranking or a subset of features. The FE approach defines a new feature vector space
in which each new feature is obtained by combinations or transformations of the original fea-
tures. FS leads to savings in measurements cost since some of the features are discarded and
the selected features retain their original physical interpretation. In addition, the retained fea-
tures may be important for understanding the physical process that generates the feature vec-
tors. On the other hand, transformed features generated by feature extraction may provide a
better discriminative ability than the best subset of given features, but these new features may
not have a clear physical meaning.

2.2 DR Categorization According to the Aim
DR can be alternatively divided according to the aim of the reduction:

• DR for optimal data representation
• DR for classification.

The first aims to preserve the topological structure of data in a lower-dimensional space as
much as possible, the second one aims to enhance the subset discriminatory power. Although
the same tools may be often used for both purposes, caution is needed. An example is PCA,
one of the primary tools for representing data in lower-dimensional space, which may easily
discard important information if used for DR for classification. In the sequel we shall concen-
trate on the feature subset selection problem only, with classification being the primary aim.
For a broader overview of the subject see, e.g., Duda et al. (2000), McLachlan (2004), Ripley
(2005), Theodoridis et al. (2006), Webb (2002).

3. Feature Subset Selection

Given a set Y of |Y| features, let us denote Xd the set of all possible subsets of size d, where
d represents the desired number of features. Let J(X) be a criterion function that evaluates
feature subset X ∈ Xd. Without any loss of generality, let us consider a higher value of J

to indicate a better feature subset. Then the feature selection problem can be formulated as
follows: Find the subset X̃d for which

J(X̃d) = max
X∈Xd

J(X). (1)

Assuming that a suitable criterion function has been chosen to evaluate the effectiveness of
feature subsets, feature selection is reduced to a search problem that detects an optimal feature
subset based on the selected measure. Note that the choice of d may be a complex issue
depending on problem characteristics, unless the d value can be optimized as part of the search
process.
One particular property of feature selection criterion, the monotonicity property, is required
specifically in certain optimal FS methods. Assuming we have two subsets S1 and S2 of feature
set Y and a criterion J that evaluates each subset Si. The monotonicity condition requires the
following:

S1 ⊂ S2 ⇒ J(S1) ≤ J(S2). (2)

That is, evaluating the feature selection criterion on a subset of features of a given set yields a
smaller value of the feature selection criterion.

3.1 FS Categorization With Respect to Optimality
Feature subset selection methods can be split into basic families:

• Optimal methods: These include, e.g., exhaustive search methods which are feasible for
only small size problems and accelerated methods, mostly built upon the Branch &
Bound principle (Somol et al. (2004)). All optimal methods can be expected consider-
ably slow for problems of high dimensionality.

• Sub-optimal methods: They essentially trade the optimality of the selected subset for com-
putational efficiency. They include, e.g., Best Individual Features, Random (Las Vegas)
methods, Sequential Forward and Backward Selection, Plus-l-Take Away-r, their gener-
alized versions, genetic algorithms, and particularly the Floating and Oscillating algo-
rithms (Devijver et al. (1982), Pudil et al. (1994), Somol et al. (2000), Somol et al. (2008b)).

Although the exhaustive search guarantees the optimality of a solution, in many realistic prob-
lems it is computationally prohibitive. The well known Branch and Bound (B&B) algorithm
guarantees to select an optimal feature subset of size d without involving explicit evaluation
of all the possible combinations of d measurements. However, the algorithm is applicable only
under the assumption that the feature selection criterion used satisfies the monotonicity condi-
tion (2). This assumption precludes the use of classifier error rate as the criterion (cf. wrappers,
Kohavi et al. (1997b)). This is an important drawback as the error rate can be considered su-
perior to other criteria, Siedlecki et al. (1993), Kohavi et al. (1997b), Tsamardinos et al. (2003).
Moreover, all optimal algorithms become computationally prohibitive for problems of high
dimensionality. In practice, therefore, one has to rely on computationally feasible procedures
which perform the search quickly but may yield sub-optimal results. A comprehensive list of
sub-optimal procedures can be found, e.g., in books Devijver et al. (1982), Fukunaga (1990),
Webb (2002), Theodoridis et al. (2006). A comparative taxonomy can be found, e.g., in Blum
et al. (1997), Ferri et al. (1994), Guyon et al. (2003), Jain et al. (1997), Jain et al. (2000), Yusta
(2009), Kudo et al. (2000), Liu et al. (2005), Salappa et al. (2007), Vafaie et al. (1994) or Yang
et al. (1998). Our own research and experience with FS has led us to the conclusion that there
exists no unique generally applicable approach to the problem. Some approaches are more suitable

under certain conditions, others are more appropriate under other conditions, depending on
our knowledge of the problem. Hence continuing effort is invested in developing new methods
to cover the majority of situations which can be encountered in practice.

3.2 FS Categorization With Respect to Selection Criteria
Based on the selection criterion choice, feature selection methods may roughly be divided into:

• Filter methods (Yu et al. (2003), Dash et al. (2002)) are based on performance evalua-
tion functions calculated directly from the training data such as distance, information,
dependency, and consistency, and select features subsets without involving any learning
algorithm.

• Wrapper methods (Kohavi et al. (1997a)) require one predetermined learning algorithm
and use its estimated performance as the evaluation criterion. They attempt to find fea-
tures better suited to the learning algorithm aiming to improve performance. Generally,
the wrapper method achieves better performance than the filter method, but tends to
be more computationally expensive than the filter approach. Also, the wrappers yield
feature subsets optimized for the given learning algorithm only - the same subset may
thus be bad in another context.

• Embedded methods (Guyon et al. (2003), but also Kononenko (1994) or Pudil et al. (1995),
Novovičová et al. (1996)) integrate the feature selection process into the model estima-
tion process. Devising model and selecting features is thus one inseparable learning
process, that may be looked upon as a special form of wrappers. Embedded meth-
ods thus offer performance competitive to wrappers, enable faster learning process, but
produce results tightly coupled with particular model.

• Hybrid approach (Das (2001), Sebban et al. (2002), Somol et al. (2006)) combines the ad-
vantages of more than one of the listed approaches. Hybrid algorithms have recently
been proposed to deal with high dimensional data. These algorithms mainly focus on
combining filter and wrapper algorithms to achieve best possible performance with a
particular learning algorithm with the time complexity comparable to that of the filter
algorithms.

3.3 FS Categorization With Respect to Problem Knowledge
From another point of view there are perhaps two basic classes of situations with respect to a
priori knowledge of the underlying probability structures:

• Some a priori knowledge is available: It is at least known that probability density func-
tions are unimodal. In these cases, one of probabilistic distance measures (Mahalanobis,
Bhattacharyya, etc., see Devijver et al. (1982)) may be appropriate as the evaluation cri-
terion. For this type of situations we recommend either the recent prediction-based
B&B algorithms for optimal search Somol et al. (2004), or sub-optimal search methods
in appropriate filter or wrapper setting (Sect. 4).

• No a priori knowledge is available: We cannot even assume that probability density func-
tions are unimodal. For these situations either a wrapper-based solution using sub-
optimal search methods (Sect. 4) can be found suitable, or, provided the size of training
data is sufficient, it is possible to apply one of the embedded mixture-based methods
that are based on approximating unknown class-conditional probability density func-
tions by finite mixtures of a special type (Pudil et al. (1995), Novovičová et al. (1996)).

4. Sub-optimal Search Methods

Provided a suitable FS criterion function (cf. Devijver et al. (1982)) is available, the only tool
needed is the search algorithm that generates a sequence of subsets to be tested. Despite the
advances in optimal search (Somol et al. (2004), Nakariyakul et al. (2007)), for larger than
moderate-sized problems we have to resort to sub-optimal methods. Very large number of
various methods exists. The FS framework includes approaches that take use of evolutionary
(genetic) algorithms (Hussein et al. (2001)), tabu search (Zhang et al. (2002)), or ant colony
(Jensen (2006)). In the following we present a basic overview over several tools that are useful
for problems of varying complexity, based mostly on the idea of sequential search (Section 4.2).
An integral part of any FS process is the decision about the number of features to be selected.
Determining the correct subspace dimensionality is a difficult problem beyond the scope of
this chapter. Nevertheless, in the following we will distinguish two types of FS methods:
d-parametrized and d-optimizing. Most of the available methods are d-parametrized, i.e.,
they require the user to decide what cardinality should the resulting feature subset have. In
Section 4.7 a d-optimizing procedure will be described, that optimizes both the feature subset
size and its contents at once.

4.1 Best Individual Features
The Best Individual Features (BIF) approach is the simplest approach to FS. Each feature is
first evaluated individually using the chosen criterion. Subsets are then selected simply by
choosing the best individual features. This approach is the fastest but weakest option. It
is often the only applicable approach to FS in problems of very high dimensionality. BIF is
standard in text categorization (Yang et al. (1997), Sebastiani (2002)), genetics (Xing (2003),
Saeys et al. (2007)), etc. BIF may be preferable in other types of problems to overcome FS
stability problems (see Sect. 6.1). However, more advanced methods that take into account
relations among features are likely to produce better results. Several of such methods are
discussed in the following.

4.2 Sequential Search Framework
To simplify further discussion let us focus only on the family of sequential search methods.
Most of the known sequential FS algorithms share the same “core mechanism” of adding and
removing features to/from a current subset. The respective algorithm steps can be described
as follows (for the sake of simplicity we consider only non-generalized algorithms that process
one feature at a time only):

Definition 1. For a given current feature set Xd, let f+ be the feature such that

f+ = arg max
f∈Y\Xd

J+(Xd, f) , (3)

where J+(Xd, f) denotes the criterion function used to evaluate the subset obtained by adding f (f ∈
Y \ Xd) to Xd. Then we shall say that ADD(Xd) is an operation of adding feature f+ to the current
set Xd to obtain set Xd+1 if

ADD(Xd) ≡ Xd ∪ { f+} = Xd+1, Xd, Xd+1 ⊂ Y. (4)

Definition 2. For a given current feature set Xd, let f− be the feature such that

f− = arg max
f∈Xd

J−(Xd, f) , (5)

Efficient Feature Subset Selection and Subset Size Optimization 5

under certain conditions, others are more appropriate under other conditions, depending on
our knowledge of the problem. Hence continuing effort is invested in developing new methods
to cover the majority of situations which can be encountered in practice.

3.2 FS Categorization With Respect to Selection Criteria
Based on the selection criterion choice, feature selection methods may roughly be divided into:

• Filter methods (Yu et al. (2003), Dash et al. (2002)) are based on performance evalua-
tion functions calculated directly from the training data such as distance, information,
dependency, and consistency, and select features subsets without involving any learning
algorithm.

• Wrapper methods (Kohavi et al. (1997a)) require one predetermined learning algorithm
and use its estimated performance as the evaluation criterion. They attempt to find fea-
tures better suited to the learning algorithm aiming to improve performance. Generally,
the wrapper method achieves better performance than the filter method, but tends to
be more computationally expensive than the filter approach. Also, the wrappers yield
feature subsets optimized for the given learning algorithm only - the same subset may
thus be bad in another context.

• Embedded methods (Guyon et al. (2003), but also Kononenko (1994) or Pudil et al. (1995),
Novovičová et al. (1996)) integrate the feature selection process into the model estima-
tion process. Devising model and selecting features is thus one inseparable learning
process, that may be looked upon as a special form of wrappers. Embedded meth-
ods thus offer performance competitive to wrappers, enable faster learning process, but
produce results tightly coupled with particular model.

• Hybrid approach (Das (2001), Sebban et al. (2002), Somol et al. (2006)) combines the ad-
vantages of more than one of the listed approaches. Hybrid algorithms have recently
been proposed to deal with high dimensional data. These algorithms mainly focus on
combining filter and wrapper algorithms to achieve best possible performance with a
particular learning algorithm with the time complexity comparable to that of the filter
algorithms.

3.3 FS Categorization With Respect to Problem Knowledge
From another point of view there are perhaps two basic classes of situations with respect to a
priori knowledge of the underlying probability structures:

• Some a priori knowledge is available: It is at least known that probability density func-
tions are unimodal. In these cases, one of probabilistic distance measures (Mahalanobis,
Bhattacharyya, etc., see Devijver et al. (1982)) may be appropriate as the evaluation cri-
terion. For this type of situations we recommend either the recent prediction-based
B&B algorithms for optimal search Somol et al. (2004), or sub-optimal search methods
in appropriate filter or wrapper setting (Sect. 4).

• No a priori knowledge is available: We cannot even assume that probability density func-
tions are unimodal. For these situations either a wrapper-based solution using sub-
optimal search methods (Sect. 4) can be found suitable, or, provided the size of training
data is sufficient, it is possible to apply one of the embedded mixture-based methods
that are based on approximating unknown class-conditional probability density func-
tions by finite mixtures of a special type (Pudil et al. (1995), Novovičová et al. (1996)).

4. Sub-optimal Search Methods

Provided a suitable FS criterion function (cf. Devijver et al. (1982)) is available, the only tool
needed is the search algorithm that generates a sequence of subsets to be tested. Despite the
advances in optimal search (Somol et al. (2004), Nakariyakul et al. (2007)), for larger than
moderate-sized problems we have to resort to sub-optimal methods. Very large number of
various methods exists. The FS framework includes approaches that take use of evolutionary
(genetic) algorithms (Hussein et al. (2001)), tabu search (Zhang et al. (2002)), or ant colony
(Jensen (2006)). In the following we present a basic overview over several tools that are useful
for problems of varying complexity, based mostly on the idea of sequential search (Section 4.2).
An integral part of any FS process is the decision about the number of features to be selected.
Determining the correct subspace dimensionality is a difficult problem beyond the scope of
this chapter. Nevertheless, in the following we will distinguish two types of FS methods:
d-parametrized and d-optimizing. Most of the available methods are d-parametrized, i.e.,
they require the user to decide what cardinality should the resulting feature subset have. In
Section 4.7 a d-optimizing procedure will be described, that optimizes both the feature subset
size and its contents at once.

4.1 Best Individual Features
The Best Individual Features (BIF) approach is the simplest approach to FS. Each feature is
first evaluated individually using the chosen criterion. Subsets are then selected simply by
choosing the best individual features. This approach is the fastest but weakest option. It
is often the only applicable approach to FS in problems of very high dimensionality. BIF is
standard in text categorization (Yang et al. (1997), Sebastiani (2002)), genetics (Xing (2003),
Saeys et al. (2007)), etc. BIF may be preferable in other types of problems to overcome FS
stability problems (see Sect. 6.1). However, more advanced methods that take into account
relations among features are likely to produce better results. Several of such methods are
discussed in the following.

4.2 Sequential Search Framework
To simplify further discussion let us focus only on the family of sequential search methods.
Most of the known sequential FS algorithms share the same “core mechanism” of adding and
removing features to/from a current subset. The respective algorithm steps can be described
as follows (for the sake of simplicity we consider only non-generalized algorithms that process
one feature at a time only):

Definition 1. For a given current feature set Xd, let f+ be the feature such that

f+ = arg max
f∈Y\Xd

J+(Xd, f) , (3)

where J+(Xd, f) denotes the criterion function used to evaluate the subset obtained by adding f (f ∈
Y \ Xd) to Xd. Then we shall say that ADD(Xd) is an operation of adding feature f+ to the current
set Xd to obtain set Xd+1 if

ADD(Xd) ≡ Xd ∪ { f+} = Xd+1, Xd, Xd+1 ⊂ Y. (4)

Definition 2. For a given current feature set Xd, let f− be the feature such that

f− = arg max
f∈Xd

J−(Xd, f) , (5)

where J−(Xd, f) denotes the criterion function used to evaluate the subset obtained by removing f
(f ∈ Xd) from Xd. Then we shall say that REMOVE(Xd) is an operation of removing feature f− from
the current set Xd to obtain set Xd−1 if

REMOVE(Xd) ≡ Xd \ { f−} = Xd−1, Xd, Xd−1 ⊂ Y. (6)

In order to simplify the notation for a repeated application of FS operations we introduce the
following useful notation

Xd+2 = ADD(Xd+1) = ADD(ADD(Xd)) = ADD2(Xd) , (7)

Xd−2 = REMOVE(REMOVE(Xd)) = REMOVE2(Xd) ,

and more generally

Xd+δ = ADDδ(Xd), Xd−δ = REMOVEδ(Xd) . (8)

Note that in standard sequential FS methods J+(·) and J−(·) stand for

J+(Xd, f) = J(Xd ∪ { f }), J−(Xd, f) = J(Xd \ { f }) , (9)

where J(·) is either a filter- or wrapper-based criterion function (Kohavi et al. (1997b)) to be
evaluated on the subspace defined by the tested feature subset.

4.3 Simplest Sequential Selection
The basic feature selection approach is to build up a subset of required number of fea-
tures incrementally starting with the empty set (bottom-up approach) or to start with
the complete set of features and remove redundant features until d features remain
(top-down approach). The simplest (among recommendable choices) yet widely used
sequential forward (or backward) selection methods, SFS and SBS (Whitney (1971), De-
vijver et al. (1982)), iteratively add (remove) one feature at a time so as to max-
imize the intermediate criterion value until the required dimensionality is achieved.

SFS (Sequential Forward Selection) yielding a subset of d features:

1. Xd = ADDd(∅).

SBS (Sequential Backward Selection) yielding a subset of d features:

1. Xd = REMOVE|Y|−d(Y).

As many other of the earlier sequential methods both SFS and SBS suffer from the so-called
nesting of feature subsets which significantly deteriorates optimization ability. The first at-
tempt to overcome this problem was to employ either the Plus-l-Take away-r (also known as
(l, r)) or generalized (l, r) algorithms (Devijver et al. (1982)) which involve successive aug-
mentation and depletion process. The same idea in a principally extended and refined form
constitutes the basis of Floating Search.

4.4 Sequential Floating Search
The Sequential Forward Floating Selection (SFFS) (Pudil et al. (1994)) procedure consists of
applying after each forward step a number of backward steps as long as the resulting subsets
are better than previously evaluated ones at that level. Consequently, there are no backward
steps at all if intermediate result at actual level (of corresponding dimensionality) cannot be
improved. The same applies for the backward version of the procedure. Both algorithms allow
a ’self-controlled backtracking’ so they can eventually find good solutions by adjusting the
trade-off between forward and backward steps dynamically. In a certain way, they compute
only what they need without any parameter setting.

Fig. 1. Sequential Forward Floating Selection Algorithm

SFFS (Sequential Forward Floating Selection) yielding a subset of d features, with optional
search-restricting parameter ∆ ∈ [0, D − d]:

1. Start with X0 = ∅, k = 0.

2. Xk+1 = ADD(Xk), k = k + 1.

3. Repeat Xk−1 = REMOVE(Xk), k = k − 1 as long as it improves solutions already known
for the lower k.

4. If k < d + ∆ go to 2.

A detailed formal description of this now classical procedure can be found in Pudil et al.
(1994). Nevertheless, the idea behind it is simple enough and can be illustrated sufficiently in
Fig. 1. (Condition k = d + ∆ terminates the algorithm after the target subset of d features has
been found and possibly refined by means of backtracking from dimensionalities greater than
d.) The backward counterpart to SFFS is the Sequential Backward Floating Selection (SBFS).
Its principle is analogous.
Floating search algorithms can be considered universal tools not only outperforming all pre-
decessors, but also keeping advantages not met by more sophisticated algorithms. They find
good solutions in all problem dimensions in one run. The overall search speed is high enough
for most of practical problems.

SBFS (Sequential Backward Floating Selection) yielding a subset of d features, with optional
search-restricting parameter ∆ ∈ [0, d]:

1. Start with X0 = Y, k = |Y|.
2. Xk−1 = REMOVE(Xk), k = k − 1.

Efficient Feature Subset Selection and Subset Size Optimization 7

where J−(Xd, f) denotes the criterion function used to evaluate the subset obtained by removing f
(f ∈ Xd) from Xd. Then we shall say that REMOVE(Xd) is an operation of removing feature f− from
the current set Xd to obtain set Xd−1 if

REMOVE(Xd) ≡ Xd \ { f−} = Xd−1, Xd, Xd−1 ⊂ Y. (6)

In order to simplify the notation for a repeated application of FS operations we introduce the
following useful notation

Xd+2 = ADD(Xd+1) = ADD(ADD(Xd)) = ADD2(Xd) , (7)

Xd−2 = REMOVE(REMOVE(Xd)) = REMOVE2(Xd) ,

and more generally

Xd+δ = ADDδ(Xd), Xd−δ = REMOVEδ(Xd) . (8)

Note that in standard sequential FS methods J+(·) and J−(·) stand for

J+(Xd, f) = J(Xd ∪ { f }), J−(Xd, f) = J(Xd \ { f }) , (9)

where J(·) is either a filter- or wrapper-based criterion function (Kohavi et al. (1997b)) to be
evaluated on the subspace defined by the tested feature subset.

4.3 Simplest Sequential Selection
The basic feature selection approach is to build up a subset of required number of fea-
tures incrementally starting with the empty set (bottom-up approach) or to start with
the complete set of features and remove redundant features until d features remain
(top-down approach). The simplest (among recommendable choices) yet widely used
sequential forward (or backward) selection methods, SFS and SBS (Whitney (1971), De-
vijver et al. (1982)), iteratively add (remove) one feature at a time so as to max-
imize the intermediate criterion value until the required dimensionality is achieved.

SFS (Sequential Forward Selection) yielding a subset of d features:

1. Xd = ADDd(∅).

SBS (Sequential Backward Selection) yielding a subset of d features:

1. Xd = REMOVE|Y|−d(Y).

As many other of the earlier sequential methods both SFS and SBS suffer from the so-called
nesting of feature subsets which significantly deteriorates optimization ability. The first at-
tempt to overcome this problem was to employ either the Plus-l-Take away-r (also known as
(l, r)) or generalized (l, r) algorithms (Devijver et al. (1982)) which involve successive aug-
mentation and depletion process. The same idea in a principally extended and refined form
constitutes the basis of Floating Search.

4.4 Sequential Floating Search
The Sequential Forward Floating Selection (SFFS) (Pudil et al. (1994)) procedure consists of
applying after each forward step a number of backward steps as long as the resulting subsets
are better than previously evaluated ones at that level. Consequently, there are no backward
steps at all if intermediate result at actual level (of corresponding dimensionality) cannot be
improved. The same applies for the backward version of the procedure. Both algorithms allow
a ’self-controlled backtracking’ so they can eventually find good solutions by adjusting the
trade-off between forward and backward steps dynamically. In a certain way, they compute
only what they need without any parameter setting.

Fig. 1. Sequential Forward Floating Selection Algorithm

SFFS (Sequential Forward Floating Selection) yielding a subset of d features, with optional
search-restricting parameter ∆ ∈ [0, D − d]:

1. Start with X0 = ∅, k = 0.

2. Xk+1 = ADD(Xk), k = k + 1.

3. Repeat Xk−1 = REMOVE(Xk), k = k − 1 as long as it improves solutions already known
for the lower k.

4. If k < d + ∆ go to 2.

A detailed formal description of this now classical procedure can be found in Pudil et al.
(1994). Nevertheless, the idea behind it is simple enough and can be illustrated sufficiently in
Fig. 1. (Condition k = d + ∆ terminates the algorithm after the target subset of d features has
been found and possibly refined by means of backtracking from dimensionalities greater than
d.) The backward counterpart to SFFS is the Sequential Backward Floating Selection (SBFS).
Its principle is analogous.
Floating search algorithms can be considered universal tools not only outperforming all pre-
decessors, but also keeping advantages not met by more sophisticated algorithms. They find
good solutions in all problem dimensions in one run. The overall search speed is high enough
for most of practical problems.

SBFS (Sequential Backward Floating Selection) yielding a subset of d features, with optional
search-restricting parameter ∆ ∈ [0, d]:

1. Start with X0 = Y, k = |Y|.
2. Xk−1 = REMOVE(Xk), k = k − 1.

3. Repeat Xk+1 = ADD(Xk), k = k + 1 as long as it improves solutions already known for the
higher k.

4. If k > d − ∆ go to 2.

4.4.1 Further Developments of the Floating Search Idea
As the Floating Search algorithms have been found successful and generally accepted to be
an efficient universal tool, their idea was further investigated. The so-called Adaptive Float-
ing Search has been proposed in Somol et al. (1999). The ASFFS and ASBFS algorithms are
able to outperform the classical SFFS and SBFS algorithms in certain cases, but at a cost of
considerable increase of search time and the necessity to deal with unclear parameters. Our
experience shows that ASFFS/ASBFS is usually inferior to newer algorithms, which we focus
on in the following. An improved version of Floating Search has been published recently in
Nakariyakul et al. (2009).

4.5 Oscillating Search
The more recent Oscillating Search (OS) (Somol et al. (2000)) can be considered a “meta” pro-
cedure, that takes use of other feature selection methods as sub-procedures in its own search.
The concept is highly flexible and enables modifications for different purposes. It has shown to
be very powerful and capable of over-performing standard sequential procedures, including
Floating Search algorithms. Unlike other methods, the OS is based on repeated modification
of the current subset Xd of d features. In this sense the OS is independent of the predominant
search direction. This is achieved by alternating so-called down- and up-swings. Both swings
attempt to improve the current set Xd by replacing some of the features by better ones. The
down-swing first removes, then adds back, while the up-swing first adds, then removes. Two
successive opposite swings form an oscillation cycle. The OS can thus be looked upon as a con-
trolled sequence of oscillation cycles. The value of o denoted oscillation cycle depth determines
the number of features to be replaced in one swing. o is increased after unsuccessful oscillation
cycles and reset to 1 after each Xd improvement. The algorithm terminates when o exceeds
a user-specified limit ∆. The course of Oscillating Search is illustrated in comparison to SFS
and SFFS in Fig. 2. Every OS algorithm requires some initial set of d features. The initial set
may be obtained randomly or in any other way, e.g., using some of the traditional sequential
selection procedures. Furthermore, almost any feature selection procedure can be used in up-
and down-swings to accomplish the replacements of feature o-tuples. For OS flow-chart see
Fig. 3.

OS (Oscillating Search) yielding a subset of d features, with optional search-restricting param-
eter ∆ ≥ 1):

1. Start with initial set Xd of d features. Set cycle depth to o = 1.

2. Let X↓
d = ADDo(REMOVEo(Xd)).

3. If X↓
d better than Xd, let Xd = X↓

d , let o = 1 and go to 2.

4. Let X↑
d = REMOVEo(ADDo(Xd)).

5. If X↑
d better than Xd, let Xd = X↑

d , let o = 1 and go to 2.

6. If o < ∆ let o = o + 1 and go to 2.

Fig. 2. Graphs demonstrate the course of d-parametrized search algorithms: a) Sequential
Forward Selection, b) Sequential Forward Floating Selection, c) Oscillating Search.

The generality of OS search concept allows to adjust the search for better speed or better accu-
racy (by adjusting ∆, redefining the initialization procedure or redefining ADD / REMOVE).
As opposed to all sequential search procedures, OS does not waste time evaluating subsets
of cardinalities too different from the target one. This "focus" improves the OS ability to find
good solutions for subsets of given cardinality. The fastest improvement of the target sub-
set may be expected in initial phases of the algorithm, because of the low initial cycle depth.
Later, when the current feature subset evolves closer to optimum, low-depth cycles fail to im-
prove and therefore the algorithm broadens the search (o = o + 1). Though this improves
the chance to get closer to the optimum, the trade-off between finding a better solution and
computational time becomes more apparent. Consequently, OS tends to improve the solution
most considerably during the fastest initial search stages. This behavior is advantageous, be-
cause it gives the option of stopping the search after a while without serious result-degrading
consequences. Let us summarize the key OS advantages:

• It may be looked upon as a universal tuning mechanism, being able to improve solu-
tions obtained in other way.

• The randomly initialized OS is very fast, in case of very high-dimensional problems
may become the only applicable alternative to BIF. For example, in document analysis
(Novovičová et al. (2006)) for search of the best 1000 words out of a vocabulary of 10000
all other sequential methods prove to be too slow.

• Because the OS processes subsets of target cardinality from the very beginning, it may
find solutions even in cases, where the sequential procedures fail due to numerical prob-
lems.

Efficient Feature Subset Selection and Subset Size Optimization 9

3. Repeat Xk+1 = ADD(Xk), k = k + 1 as long as it improves solutions already known for the
higher k.

4. If k > d − ∆ go to 2.

4.4.1 Further Developments of the Floating Search Idea
As the Floating Search algorithms have been found successful and generally accepted to be
an efficient universal tool, their idea was further investigated. The so-called Adaptive Float-
ing Search has been proposed in Somol et al. (1999). The ASFFS and ASBFS algorithms are
able to outperform the classical SFFS and SBFS algorithms in certain cases, but at a cost of
considerable increase of search time and the necessity to deal with unclear parameters. Our
experience shows that ASFFS/ASBFS is usually inferior to newer algorithms, which we focus
on in the following. An improved version of Floating Search has been published recently in
Nakariyakul et al. (2009).

4.5 Oscillating Search
The more recent Oscillating Search (OS) (Somol et al. (2000)) can be considered a “meta” pro-
cedure, that takes use of other feature selection methods as sub-procedures in its own search.
The concept is highly flexible and enables modifications for different purposes. It has shown to
be very powerful and capable of over-performing standard sequential procedures, including
Floating Search algorithms. Unlike other methods, the OS is based on repeated modification
of the current subset Xd of d features. In this sense the OS is independent of the predominant
search direction. This is achieved by alternating so-called down- and up-swings. Both swings
attempt to improve the current set Xd by replacing some of the features by better ones. The
down-swing first removes, then adds back, while the up-swing first adds, then removes. Two
successive opposite swings form an oscillation cycle. The OS can thus be looked upon as a con-
trolled sequence of oscillation cycles. The value of o denoted oscillation cycle depth determines
the number of features to be replaced in one swing. o is increased after unsuccessful oscillation
cycles and reset to 1 after each Xd improvement. The algorithm terminates when o exceeds
a user-specified limit ∆. The course of Oscillating Search is illustrated in comparison to SFS
and SFFS in Fig. 2. Every OS algorithm requires some initial set of d features. The initial set
may be obtained randomly or in any other way, e.g., using some of the traditional sequential
selection procedures. Furthermore, almost any feature selection procedure can be used in up-
and down-swings to accomplish the replacements of feature o-tuples. For OS flow-chart see
Fig. 3.

OS (Oscillating Search) yielding a subset of d features, with optional search-restricting param-
eter ∆ ≥ 1):

1. Start with initial set Xd of d features. Set cycle depth to o = 1.

2. Let X↓
d = ADDo(REMOVEo(Xd)).

3. If X↓
d better than Xd, let Xd = X↓

d , let o = 1 and go to 2.

4. Let X↑
d = REMOVEo(ADDo(Xd)).

5. If X↑
d better than Xd, let Xd = X↑

d , let o = 1 and go to 2.

6. If o < ∆ let o = o + 1 and go to 2.

Fig. 2. Graphs demonstrate the course of d-parametrized search algorithms: a) Sequential
Forward Selection, b) Sequential Forward Floating Selection, c) Oscillating Search.

The generality of OS search concept allows to adjust the search for better speed or better accu-
racy (by adjusting ∆, redefining the initialization procedure or redefining ADD / REMOVE).
As opposed to all sequential search procedures, OS does not waste time evaluating subsets
of cardinalities too different from the target one. This "focus" improves the OS ability to find
good solutions for subsets of given cardinality. The fastest improvement of the target sub-
set may be expected in initial phases of the algorithm, because of the low initial cycle depth.
Later, when the current feature subset evolves closer to optimum, low-depth cycles fail to im-
prove and therefore the algorithm broadens the search (o = o + 1). Though this improves
the chance to get closer to the optimum, the trade-off between finding a better solution and
computational time becomes more apparent. Consequently, OS tends to improve the solution
most considerably during the fastest initial search stages. This behavior is advantageous, be-
cause it gives the option of stopping the search after a while without serious result-degrading
consequences. Let us summarize the key OS advantages:

• It may be looked upon as a universal tuning mechanism, being able to improve solu-
tions obtained in other way.

• The randomly initialized OS is very fast, in case of very high-dimensional problems
may become the only applicable alternative to BIF. For example, in document analysis
(Novovičová et al. (2006)) for search of the best 1000 words out of a vocabulary of 10000
all other sequential methods prove to be too slow.

• Because the OS processes subsets of target cardinality from the very beginning, it may
find solutions even in cases, where the sequential procedures fail due to numerical prob-
lems.

Fig. 3. Simplified Oscillating Search algorithm flowchart.

• Because the solution improves gradually after each oscillation cycle, with the most no-
table improvements at the beginning, it is possible to terminate the algorithm prema-
turely after a specified amount of time to obtain a usable solution. The OS is thus suit-
able for use in real-time systems.

• In some cases the sequential search methods tend to uniformly get caught in certain
local extremes. Running the OS from several different random initial points gives better
chances to avoid that local extreme.

4.6 Experimental Comparison of d-Parametrized Methods
The d-parametrized sub-optimal FS methods as discussed in preceding sections 4.1 to 4.5 have
been listed in the order of their speed-vs-performance characteristics. The BIF is the fastest but
worst performing method, OS offers the strongest optimization ability at the cost of slowest
computation (although it can be adjusted differently). To illustrate this behavior we compare
the output of BIF, SFS, SFFS and OS on a FS task in wrapper (Kohavi et al. (1997a)) setting.

The methods have been used to find best feature subsets for each subset size d = 1, . . . , 34
on the ionosphere data (34 dim., 2 classes: 225 and 126 samples) from the UCI Repository
(Asuncion et al. (2007)). The dataset had been split to 80% train and 20% test part. FS has been
performed on the training part using 10-fold cross-validation, in which 3-Nearest Neighbor
classifier was used as FS criterion. BIF, SFS and SFFS require no parameters, OS had been set
to repeat each search 15× from different random initial subsets of given size, with ∆ = 15.
This set-up is highly time consuming but enables to avoid many local extremes that would
not be avoided by other algorithms.
Figure 4 shows the maximal criterion value obtained by each method for each subset size. It
can be seen that the strongest optimizer in most of cases is OS, although SFFS falls behind just
negligibly. SFS optimization ability is shown to be markedly lower, but still higher than that
of BIF.

Fig. 4. Sub-optimal FS methods’ optimization performance on 3-NN wrapper

Figure 5 shows how the optimized feature subsets perform on independent test data. From
this perspective the differences between methods largely diminish. The effects of feature over-
selection (over-fitting) affect the strongest optimizer – OS – the most. SFFS seems to be the
most reliable method in this respect. SFS yields the best independent performance in this
example. Note that although the highest optimized criterion values have been achieved for
subsets of roughly 6 features, the best independent performance can be observed for subsets
of roughly 7 to 13 features. The example thus illustrates well one of the key problems in FS
– the difficulty to find subsets that generalize well, related to the problem of feature over-
selection (Raudys (2006)).
The speed of each tested method decreases with its complexity. BIF runs in linear time. Other
methods run in polynomial time. SFFS runs roughly 10× slower than SFS. OS in the slow test
setting runs roughly 10 to 100× slower than SFFS.

4.7 Dynamic Oscillating Search – Optimizing Subset Size
The idea of Oscillating Search (Sect. 4.5) has been further extended in form of the Dynamic
Oscillating Search (DOS) (Somol et al. (2008b)). The DOS algorithm can start from any initial
subset of features (including empty set). Similarly to OS it repeatedly attempts to improve
the current set by means of repeating oscillation cycles. However, the current subset size is
allowed to change, whenever a new globally best solution is found at any stage of the oscil-
lation cycle. Unlike other methods discussed in this chapter the DOS is thus a d-optimizing
procedure.

Efficient Feature Subset Selection and Subset Size Optimization 11

Fig. 3. Simplified Oscillating Search algorithm flowchart.

• Because the solution improves gradually after each oscillation cycle, with the most no-
table improvements at the beginning, it is possible to terminate the algorithm prema-
turely after a specified amount of time to obtain a usable solution. The OS is thus suit-
able for use in real-time systems.

• In some cases the sequential search methods tend to uniformly get caught in certain
local extremes. Running the OS from several different random initial points gives better
chances to avoid that local extreme.

4.6 Experimental Comparison of d-Parametrized Methods
The d-parametrized sub-optimal FS methods as discussed in preceding sections 4.1 to 4.5 have
been listed in the order of their speed-vs-performance characteristics. The BIF is the fastest but
worst performing method, OS offers the strongest optimization ability at the cost of slowest
computation (although it can be adjusted differently). To illustrate this behavior we compare
the output of BIF, SFS, SFFS and OS on a FS task in wrapper (Kohavi et al. (1997a)) setting.

The methods have been used to find best feature subsets for each subset size d = 1, . . . , 34
on the ionosphere data (34 dim., 2 classes: 225 and 126 samples) from the UCI Repository
(Asuncion et al. (2007)). The dataset had been split to 80% train and 20% test part. FS has been
performed on the training part using 10-fold cross-validation, in which 3-Nearest Neighbor
classifier was used as FS criterion. BIF, SFS and SFFS require no parameters, OS had been set
to repeat each search 15× from different random initial subsets of given size, with ∆ = 15.
This set-up is highly time consuming but enables to avoid many local extremes that would
not be avoided by other algorithms.
Figure 4 shows the maximal criterion value obtained by each method for each subset size. It
can be seen that the strongest optimizer in most of cases is OS, although SFFS falls behind just
negligibly. SFS optimization ability is shown to be markedly lower, but still higher than that
of BIF.

Fig. 4. Sub-optimal FS methods’ optimization performance on 3-NN wrapper

Figure 5 shows how the optimized feature subsets perform on independent test data. From
this perspective the differences between methods largely diminish. The effects of feature over-
selection (over-fitting) affect the strongest optimizer – OS – the most. SFFS seems to be the
most reliable method in this respect. SFS yields the best independent performance in this
example. Note that although the highest optimized criterion values have been achieved for
subsets of roughly 6 features, the best independent performance can be observed for subsets
of roughly 7 to 13 features. The example thus illustrates well one of the key problems in FS
– the difficulty to find subsets that generalize well, related to the problem of feature over-
selection (Raudys (2006)).
The speed of each tested method decreases with its complexity. BIF runs in linear time. Other
methods run in polynomial time. SFFS runs roughly 10× slower than SFS. OS in the slow test
setting runs roughly 10 to 100× slower than SFFS.

4.7 Dynamic Oscillating Search – Optimizing Subset Size
The idea of Oscillating Search (Sect. 4.5) has been further extended in form of the Dynamic
Oscillating Search (DOS) (Somol et al. (2008b)). The DOS algorithm can start from any initial
subset of features (including empty set). Similarly to OS it repeatedly attempts to improve
the current set by means of repeating oscillation cycles. However, the current subset size is
allowed to change, whenever a new globally best solution is found at any stage of the oscil-
lation cycle. Unlike other methods discussed in this chapter the DOS is thus a d-optimizing
procedure.

Fig. 5. Sub-optimal FS methods’ performance verified using 3-NN on independent data

k+�

k-�

k

0 DOS Iteration

S
u
b
s
e
t�
s
iz

e

Fig. 6. The DOS course of search

The course of Dynamic Oscillating Search is illustrated in Fig. 6. See Fig. 2 for comparison
with OS, SFFS and SFS. Similarly to OS the DOS terminates when the current cycle depth
exceeds a user-specified limit ∆. The DOS also shares with OS the same advantages as listed
in Sect. 4.5: the ability to tune results obtained in a different way, gradual result improvement,
fastest improvement in initial search stages, etc.

DOS (Dynamic Oscillating Search) yielding a subset of optimized size k, with optional search-
restricting parameter ∆ ≥ 1):

1. Start with Xk = ADD(ADD(∅)), k=2. Set cycle depth to δ = 1.

2. Compute ADDδ(REMOVEδ(Xt)); if any intermediate subset Xi, i ∈ [k − δ, k] is found
better than Xk, let it become the new Xk with k = i, let δ = 1 and restart step 2.

3. Compute REMOVEδ(ADDδ(Xt)); if any intermediate subset Xj, j ∈ [k, k + δ] is found
better than Xk, let it become the new Xk with k = j, let δ = 1 and go to 2.

4. If δ < ∆ let δ = δ + 1 and go to 2.

A simplified DOS flowchart is given in Fig. 7. In the course of search the DOS generates a se-
quence of solutions with ascending criterion values and, provided the criterion value does not
change, decreasing subset size. The search time vs. closeness-to-optimum trade-off can thus

Let piv�= k�= 0Let �����

Yes

Yes

Yes Yes Yes

Yes

Remove�one

feature�using SBS

Remove�one

feature�using SBS

Add one�feature

using SFS

Add one�feature

using SFS

Let k�=�k 1- Let k�=�k 1+ Let k�=�k 1+ Let k�=�k 1-

R

No No No No

No

No

No No No

piv�-�k < � k�- <piv �piv k> piv k<
k >�1

�����

k <�DAND AND

Let R = Let R = Let R =

Let � �= +�1

New

overall�best�?

New

overall�best�?

New

overall�best�?

New

overall�best�?

Let piv =�k

Let � = 1

Let R =

Let R =

Let R =START
To�prevent�interval�overflow:

If Let�Rk=1 =

� �= +1let

If Let�Rk=D = and

STOP

Note:�Here

R�represents

the�oscillation

cycle�phase

piv

output

is�the�last

pivot

Fig. 7. Simplified diagram of the DOS algorithm.

be handled by means of pre-mature search interruption. The number of criterion evaluations
is in the O(n3) order of magnitude. Nevertheless, the total search time depends heavily on the
chosen ∆ value, on particular data and criterion settings, and on the unpredictable number of
oscillation cycle restarts that take place after each solution improvement.

4.7.1 DOS Experiments
We compare the DOS algorithm with the previously discussed methods SFS, SFFS and OS,
here used in d-optimizing manner: each method is run for each possible subset size to eventu-
ally select the subset size that yields the highest criterion value. To mark the difference from
standard d-parametrized course of search we denote these methods SFS�, SFFS�and OS�.
We used the accuracy of various classifiers as FS criterion function: Bayesian classifier assum-
ing Gauss distribution, 3-Nearest Neighbor and SVM with RBF kernel (Chang et al. (2001)).
We tested the methods on wdbc data (30 dim., 2 classes: 357 benign and 212 malignant sam-
ples) from UCI Repository (Asuncion et al. (2007)). The experiments have been accomplished
using 2-tier cross-validation. The outer 10-fold cross-validation loop serves to produce differ-
ent test-train data splits, the inner 10-fold cross-validation loop further splits the train data
part for classifier training and validation as part of the FS process. The results of our experi-
ments are collected in Table 1. (Further set of related experiments can be found in Table 3.)
Each table contains three sections gathering results for one type of classifier (criterion func-
tion). The main information of interest is in the column I-CV, showing the maximum criterion
value (classification accuracy) yielded by each FS method in the inner cross-validation loop,
and O-CV, showing the averaged respective classification accuracy on independent test data.
The following properties of the Dynamic Oscillating Search can be observed: (i) it is able
to outperform other tested methods in the sense of criterion maximization ability (I-CV), (ii)
it tends to produce the smallest feature subsets, (iii) its impact on classifier performance on
unknown data varies depending on data and classifier used – in some cases it yields the best
results, however this behavior is inconsistent.

Efficient Feature Subset Selection and Subset Size Optimization 13

Fig. 5. Sub-optimal FS methods’ performance verified using 3-NN on independent data

k+�

k-�

k

0 DOS Iteration

S
u
b
s
e
t�
s
iz

e

Fig. 6. The DOS course of search

The course of Dynamic Oscillating Search is illustrated in Fig. 6. See Fig. 2 for comparison
with OS, SFFS and SFS. Similarly to OS the DOS terminates when the current cycle depth
exceeds a user-specified limit ∆. The DOS also shares with OS the same advantages as listed
in Sect. 4.5: the ability to tune results obtained in a different way, gradual result improvement,
fastest improvement in initial search stages, etc.

DOS (Dynamic Oscillating Search) yielding a subset of optimized size k, with optional search-
restricting parameter ∆ ≥ 1):

1. Start with Xk = ADD(ADD(∅)), k=2. Set cycle depth to δ = 1.

2. Compute ADDδ(REMOVEδ(Xt)); if any intermediate subset Xi, i ∈ [k − δ, k] is found
better than Xk, let it become the new Xk with k = i, let δ = 1 and restart step 2.

3. Compute REMOVEδ(ADDδ(Xt)); if any intermediate subset Xj, j ∈ [k, k + δ] is found
better than Xk, let it become the new Xk with k = j, let δ = 1 and go to 2.

4. If δ < ∆ let δ = δ + 1 and go to 2.

A simplified DOS flowchart is given in Fig. 7. In the course of search the DOS generates a se-
quence of solutions with ascending criterion values and, provided the criterion value does not
change, decreasing subset size. The search time vs. closeness-to-optimum trade-off can thus

Let piv�= k�= 0Let �����

Yes

Yes

Yes Yes Yes

Yes

Remove�one

feature�using SBS

Remove�one

feature�using SBS

Add one�feature

using SFS

Add one�feature

using SFS

Let k�=�k 1- Let k�=�k 1+ Let k�=�k 1+ Let k�=�k 1-

R

No No No No

No

No

No No No

piv�-�k < � k�- <piv �piv k> piv k<
k >�1

�����

k <�DAND AND

Let R = Let R = Let R =

Let � �= +�1

New

overall�best�?

New

overall�best�?

New

overall�best�?

New

overall�best�?

Let piv =�k

Let � = 1

Let R =

Let R =

Let R =START
To�prevent�interval�overflow:

If Let�Rk=1 =

� �= +1let

If Let�Rk=D = and

STOP

Note:�Here

R�represents

the�oscillation

cycle�phase

piv

output

is�the�last

pivot

Fig. 7. Simplified diagram of the DOS algorithm.

be handled by means of pre-mature search interruption. The number of criterion evaluations
is in the O(n3) order of magnitude. Nevertheless, the total search time depends heavily on the
chosen ∆ value, on particular data and criterion settings, and on the unpredictable number of
oscillation cycle restarts that take place after each solution improvement.

4.7.1 DOS Experiments
We compare the DOS algorithm with the previously discussed methods SFS, SFFS and OS,
here used in d-optimizing manner: each method is run for each possible subset size to eventu-
ally select the subset size that yields the highest criterion value. To mark the difference from
standard d-parametrized course of search we denote these methods SFS�, SFFS�and OS�.
We used the accuracy of various classifiers as FS criterion function: Bayesian classifier assum-
ing Gauss distribution, 3-Nearest Neighbor and SVM with RBF kernel (Chang et al. (2001)).
We tested the methods on wdbc data (30 dim., 2 classes: 357 benign and 212 malignant sam-
ples) from UCI Repository (Asuncion et al. (2007)). The experiments have been accomplished
using 2-tier cross-validation. The outer 10-fold cross-validation loop serves to produce differ-
ent test-train data splits, the inner 10-fold cross-validation loop further splits the train data
part for classifier training and validation as part of the FS process. The results of our experi-
ments are collected in Table 1. (Further set of related experiments can be found in Table 3.)
Each table contains three sections gathering results for one type of classifier (criterion func-
tion). The main information of interest is in the column I-CV, showing the maximum criterion
value (classification accuracy) yielded by each FS method in the inner cross-validation loop,
and O-CV, showing the averaged respective classification accuracy on independent test data.
The following properties of the Dynamic Oscillating Search can be observed: (i) it is able
to outperform other tested methods in the sense of criterion maximization ability (I-CV), (ii)
it tends to produce the smallest feature subsets, (iii) its impact on classifier performance on
unknown data varies depending on data and classifier used – in some cases it yields the best
results, however this behavior is inconsistent.

Crit. Meth. I-CV O-CV Size Time(h)

Gauss SFS� 0.962 0.933 10.8 00:00
SFFS� 0.972 0.942 10.6 00:03
OS� 0.970 0.940 9.9 00:06
DOS 0.973 0.951 10.7 00:06
full set 0.945 30

3-NN SFS� 0.981 0.967 15.3 00:01
scaled SFFS� 0.983 0.970 13.7 00:09

OS� 0.982 0.965 14.2 00:22
DOS 0.984 0.965 12.4 00:31
full set 0.972 30

SVM SFS� 0.979 0.970 18.5 00:05
SFFS� 0.982 0.968 16.2 00:23
OS� 0.981 0.974 16.7 00:58
DOS 0.983 0.968 12.8 01:38
full set 0.972 30

Table 1. Performance of FS wrapper methods evaluated on wdbc data, 30-dim., 2-class.

5. Hybrid Algorithms – Accelerating the Search

Filter methods for feature selection are general preprocessing algorithms that do not rely on
any knowledge of the learning algorithm to be used. They are distinguished by specific eval-
uation criteria including distance, information, dependency. Since the filter methods apply
independent evaluation criteria without involving any learning algorithm they are computa-
tionally efficient. Wrapper methods require a predetermined learning algorithm instead of an
independent criterion for subset evaluation. They search through the space of feature subsets
using a learning algorithm, calculate the estimated accuracy of the learning algorithm for each
feature before it can be added to or removed from the feature subset. It means, that learning
algorithms are used to control the selection of feature subsets which are consequently better
suited to the predetermined learning algorithm. Due to the necessity to train and evaluate
the learning algorithm within the feature selection process, the wrapper methods are more
computationally expensive than the filter methods.
The main advantage of filter methods is their speed and ability to scale to large data sets.
A good argument for wrapper methods is that they tend to give superior performance. Their
time complexity, however, may become prohibitive if problem dimensionality exceeds several
dozen features.
Hybrid FS algorithms can be defined easily to utilize the advantages of both filters and wrap-
pers (Somol et al. (2006)). In the course of search, in each algorithm step filter is used to reduce
the number of candidates to be evaluated in wrapper. The scheme can be applied in any se-
quential FS algorithms by replacing Definitions 1 and 2 by Definitions 3 and 4 as follows. For
sake of simplicity let JF(.) denote the faster but for the given problem possibly less appropriate
filter criterion, JW(.) denote the slower but more appropriate wrapper criterion. The hybridiza-
tion coefficient, defining the proportion of feature subset evaluations to be accomplished by
wrapper means, is denoted by λ ∈ [0, 1]. In the following �·� denotes value rounding.

Definition 3. For a given current feature set Xd and given λ ∈ [0, 1], let Z+ be the set of candidate
features

Z+ = { fi : fi ∈ Y \ Xd; i = 1, . . . , max{1, �λ · |Y \ Xd|�}} (10)

such that
∀ f , g ∈ Y \ Xd, f ∈ Z+, g /∈ Z+ J+F (Xd, f) ≥ J+F (Xd, g) , (11)

where J+F (Xd, f) denotes the pre-filtering criterion function used to evaluate the subset obtained by
adding f (f ∈ Y \ Xd) to Xd. Let f+ be the feature such that

f+ = arg max
f∈Z+

J+W(Xd, f) , (12)

where J+W(Xd, f) denotes the main criterion function used to evaluate the subset obtained by adding
f (f ∈ Z+) to Xd. Then we shall say that ADDH(Xd) is an operation of adding feature f+ to the
current set Xd to obtain set Xd+1 if

ADDH(Xd) ≡ Xd ∪ { f+} = Xd+1, Xd, Xd+1 ⊂ Y. (13)

Definition 4. For a given current feature set Xd and given λ ∈ [0, 1], let Z− be the set of candidate
features

Z− = { fi : fi ∈ Xd; i = 1, . . . , max{1, �λ · |Xd|�}} (14)

such that
∀ f , g ∈ Xd, f ∈ Z−, g /∈ Z− J−F (Xd, f) ≥ J−F (Xd, g) , (15)

where J−F (Xd, f) denotes the pre-filtering criterion function used to evaluate the subset obtained by
removing f (f ∈ Xd) from Xd. Let f− be the feature such that

f− = arg max
f∈Z−

J−W(Xd, f), (16)

where J−W(Xd, f) denotes the main criterion function used to evaluate the subset obtained by removing
f (f ∈ Z−) from Xd. Then we shall say that REMOVEH(Xd) is an operation of removing feature f−

from the current set Xd to obtain set Xd−1 if

REMOVEH(Xd) ≡ Xd \ { f−} = Xd−1, Xd, Xd−1 ⊂ Y. (17)

The effect of hybridization is illustrated on the example in Table 2. We tested the hybridized
DOS method on waveform data (40 dim., 2 classes: 1692 and 1653 samples) from UCI Reposi-
tory (Asuncion et al. (2007)). In the hybrid setting we used Bhattacharyya distance (Devijver
et al. (1982)) as the fast filter criterion and 3-Nearest Neighbor as the slow wrapper criterion.
The reported wrapper accuracy represents the maximum criterion value found for the se-
lected feature subset. The reported independent accuracy has been obtained on independent
test data using 3-NN. Note that despite considerable reduction of search time for lower λ the
obtained feature subset yields comparable accuracy of the wrapper classifier.

Efficient Feature Subset Selection and Subset Size Optimization 15

Crit. Meth. I-CV O-CV Size Time(h)

Gauss SFS� 0.962 0.933 10.8 00:00
SFFS� 0.972 0.942 10.6 00:03
OS� 0.970 0.940 9.9 00:06
DOS 0.973 0.951 10.7 00:06
full set 0.945 30

3-NN SFS� 0.981 0.967 15.3 00:01
scaled SFFS� 0.983 0.970 13.7 00:09

OS� 0.982 0.965 14.2 00:22
DOS 0.984 0.965 12.4 00:31
full set 0.972 30

SVM SFS� 0.979 0.970 18.5 00:05
SFFS� 0.982 0.968 16.2 00:23
OS� 0.981 0.974 16.7 00:58
DOS 0.983 0.968 12.8 01:38
full set 0.972 30

Table 1. Performance of FS wrapper methods evaluated on wdbc data, 30-dim., 2-class.

5. Hybrid Algorithms – Accelerating the Search

Filter methods for feature selection are general preprocessing algorithms that do not rely on
any knowledge of the learning algorithm to be used. They are distinguished by specific eval-
uation criteria including distance, information, dependency. Since the filter methods apply
independent evaluation criteria without involving any learning algorithm they are computa-
tionally efficient. Wrapper methods require a predetermined learning algorithm instead of an
independent criterion for subset evaluation. They search through the space of feature subsets
using a learning algorithm, calculate the estimated accuracy of the learning algorithm for each
feature before it can be added to or removed from the feature subset. It means, that learning
algorithms are used to control the selection of feature subsets which are consequently better
suited to the predetermined learning algorithm. Due to the necessity to train and evaluate
the learning algorithm within the feature selection process, the wrapper methods are more
computationally expensive than the filter methods.
The main advantage of filter methods is their speed and ability to scale to large data sets.
A good argument for wrapper methods is that they tend to give superior performance. Their
time complexity, however, may become prohibitive if problem dimensionality exceeds several
dozen features.
Hybrid FS algorithms can be defined easily to utilize the advantages of both filters and wrap-
pers (Somol et al. (2006)). In the course of search, in each algorithm step filter is used to reduce
the number of candidates to be evaluated in wrapper. The scheme can be applied in any se-
quential FS algorithms by replacing Definitions 1 and 2 by Definitions 3 and 4 as follows. For
sake of simplicity let JF(.) denote the faster but for the given problem possibly less appropriate
filter criterion, JW(.) denote the slower but more appropriate wrapper criterion. The hybridiza-
tion coefficient, defining the proportion of feature subset evaluations to be accomplished by
wrapper means, is denoted by λ ∈ [0, 1]. In the following �·� denotes value rounding.

Definition 3. For a given current feature set Xd and given λ ∈ [0, 1], let Z+ be the set of candidate
features

Z+ = { fi : fi ∈ Y \ Xd; i = 1, . . . , max{1, �λ · |Y \ Xd|�}} (10)

such that
∀ f , g ∈ Y \ Xd, f ∈ Z+, g /∈ Z+ J+F (Xd, f) ≥ J+F (Xd, g) , (11)

where J+F (Xd, f) denotes the pre-filtering criterion function used to evaluate the subset obtained by
adding f (f ∈ Y \ Xd) to Xd. Let f+ be the feature such that

f+ = arg max
f∈Z+

J+W(Xd, f) , (12)

where J+W(Xd, f) denotes the main criterion function used to evaluate the subset obtained by adding
f (f ∈ Z+) to Xd. Then we shall say that ADDH(Xd) is an operation of adding feature f+ to the
current set Xd to obtain set Xd+1 if

ADDH(Xd) ≡ Xd ∪ { f+} = Xd+1, Xd, Xd+1 ⊂ Y. (13)

Definition 4. For a given current feature set Xd and given λ ∈ [0, 1], let Z− be the set of candidate
features

Z− = { fi : fi ∈ Xd; i = 1, . . . , max{1, �λ · |Xd|�}} (14)

such that
∀ f , g ∈ Xd, f ∈ Z−, g /∈ Z− J−F (Xd, f) ≥ J−F (Xd, g) , (15)

where J−F (Xd, f) denotes the pre-filtering criterion function used to evaluate the subset obtained by
removing f (f ∈ Xd) from Xd. Let f− be the feature such that

f− = arg max
f∈Z−

J−W(Xd, f), (16)

where J−W(Xd, f) denotes the main criterion function used to evaluate the subset obtained by removing
f (f ∈ Z−) from Xd. Then we shall say that REMOVEH(Xd) is an operation of removing feature f−

from the current set Xd to obtain set Xd−1 if

REMOVEH(Xd) ≡ Xd \ { f−} = Xd−1, Xd, Xd−1 ⊂ Y. (17)

The effect of hybridization is illustrated on the example in Table 2. We tested the hybridized
DOS method on waveform data (40 dim., 2 classes: 1692 and 1653 samples) from UCI Reposi-
tory (Asuncion et al. (2007)). In the hybrid setting we used Bhattacharyya distance (Devijver
et al. (1982)) as the fast filter criterion and 3-Nearest Neighbor as the slow wrapper criterion.
The reported wrapper accuracy represents the maximum criterion value found for the se-
lected feature subset. The reported independent accuracy has been obtained on independent
test data using 3-NN. Note that despite considerable reduction of search time for lower λ the
obtained feature subset yields comparable accuracy of the wrapper classifier.

Hybridization coeff. λ 0.01 0.25 0.5 0.75 1

Wrapper accuracy 0.907136 0.913116 0.921089 0.921485 0.921485
Independent accuracy 0.916268 0.911483 0.911483 0.910287 0.910287
Determined subset size 11 10 15 17 17
Time 1:12 8:06 20:42 35:21 48:24

Table 2. Performance of the hybridized Dynamic Oscillating Search wrapper FS method eval-
uated on waveform data, 40-dim., 2-class.

6. The Problem of Feature Selection Overfitting and Stability

In older literature the prevailing approach to FS method performance assessment was to eval-
uate the ability to find the optimum, or to get as close to it as possible, with respect to some
criterion function defined to distinguish classes in classification tasks or to fit data in approx-
imation tasks. Recently, emphasis is put on assessing the impact of FS on generalization per-
formance, i.e., the ability of the devised decision rule to perform well on independent data.
It has been shown that similarly to classifier over-training the effect of feature over-selection
can hinder the performance of pattern recognition system (Raudys (2006), Raudys (2006)); es-
pecially with small-sample or high-dimensional problems. Compare Figures 4 and 5 to see an
example of the effect.
It has been also pointed out that independent test data performance should not be neglected
when comparing FS methods (Reunanen (2003)). The task of FS methods’ comparison seems
to be understood ambiguously as well. It is very different whether we compare concrete
method properties or the final classifier performance determined by use of particular meth-
ods under particular settings. Certainly, final classifier performance is the ultimate quality
measure. However, misleading conclusions about FS may be easily drawn when evaluating
nothing else, as classifier performance depends on many more different aspects then just the
actual FS method used.
There seems to be a general agreement in literature that wrapper-based FS enables creation
of more accurate classifiers than filter-based FS. This claim is nevertheless to be taken with
caution, while using actual classifier accuracy as FS criterion in wrapper-based FS may lead
to the very negative effects mentioned above (overtraining). At the same time the weaker
relation of filter-based FS criterion functions to particular classifier accuracy may help better
generalization. But these effects can be hardly judged before the building of classification sys-
tem has actually been accomplished. The problem of classifier performance estimation is by
no means simple. Many estimation strategies are available, suitability of which is problem
dependent (re-substitution, data split, hold-out, cross-validation, leave-one-out, etc.). For a
detailed study on classifier training related problems and work-around methods, e.g., stabi-
lizing weak classifiers, see Skurichina (2001).

6.1 The Problem of Feature Selection Stability
It is common that classifier performance is considered the ultimate quality measure, even
when assessing the FS process. However, misleading conclusions may be easily drawn when
ignoring stability issues. Unstable FS performance may seriously deteriorate the properties of
the final classifier by selecting the wrong features. Following Kalousis et al. (2007) we define
the stability of the FS algorithm as the robustness of the feature preferences it produces to dif-
ferences in training sets drawn from the same generating distribution. FS algorithms express
the feature preferences in the form of a selected feature subset S ⊆ Y. Stability quantifies how

different training sets drawn from the same generating distribution affect the feature pref-
erences. Recent works in the area of FS methods’ stability mainly focus on various stability
indices, introducing measures based on Hamming distance, Dunne et al. (2002), correlation
coefficients and Tanimoto distance, Kalousis et al. (2007), consistency index, Kuncheva (2007)
and Shannon entropy, Křížek et al. (2007). Stability of FS procedures depends on the sample
size, the criteria utilized to perform FS, and the complexity of FS procedure, Raudys (2006).
In the following we focus on several new measures allowing to assess the FS stability of both
the d-parametrized and d-optimizing FS methods (Somol et al. (2008a)).

6.1.1 Considered Measures of Feature Selection Stability
Let S = {S1, . . . , Sn} be a system of n feature subsets Sj =

{
fki
| i = 1, . . . , dj, fki

∈ Y, dj ∈
{1, . . . , |Y|}

}
, j = 1, . . . , n, n > 1, n ∈ N, obtained from n runs of the evaluated FS algorithm

on different samplings of a given data set. Let X be the subset of Y representing all features
that appear anywhere in S :

X = { f | f ∈ Y, Ff > 0} =
n⋃

i=1
Si, X �= ∅, (18)

where Ff is the number of occurrences (frequency) of feature f ∈ Y in system S . Let N denote
the total number of occurrences of any feature in system S , i.e.,

N = ∑
g∈X

Fg =
n

∑
i=1

|Si|, N ∈ N, N ≥ n . (19)

Definition 5. The weighted consistency CW(S) of the system S is defined as

CW(S) = ∑
f∈X

w f
Ff − Fmin

Fmax − Fmin
, (20)

where w f =
Ff
N , 0 < w f ≤ 1, ∑ f∈X w f = 1.

Because Ff = 0 for all f ∈ Y \ X, the weighted consistency CW(S) can be equally expressed
using notation (19):

CW(S) = ∑
f∈X

Ff

N
·

Ff − Fmin

Fmax − Fmin
= ∑

f∈Y

Ff

N
·

Ff − 1
n − 1

. (21)

It is obvious that CW(S) = 0 if and only if (iff) N = |X|, i.e., iff Ff = 1 for all f ∈ X. This is
unrealistic in most of real cases. Whenever n > |X|, some feature must appear in more than
one subset and consequently CW(S) > 0. Similarly, CW(S) = 1 iff N = n|X|, otherwise all
subsets can not be identical.
Clearly, for any N, n representing some system of subsets S and for given Y there exists a
system Smin with such configuration of features in its subsets that yields the minimal possible
CW(·) value, to be denoted CWmin(N, n, Y), being possibly greater than 0. Similarly, a system
Smax exists that yields the maximal possible CW(·) value, to be denoted CWmax(N, n), being
possibly lower than 1.
It can be easily seen that CWmin(·) gets high when the sizes of feature subsets in system ap-
proach the total number of features |Y|, because in such system the subsets get necessarily
more similar to each other. Consequently, using measure (20) for comparison of the stability
of various FS methods may lead to misleading results if the methods tend to yield systems

Efficient Feature Subset Selection and Subset Size Optimization 17

Hybridization coeff. λ 0.01 0.25 0.5 0.75 1

Wrapper accuracy 0.907136 0.913116 0.921089 0.921485 0.921485
Independent accuracy 0.916268 0.911483 0.911483 0.910287 0.910287
Determined subset size 11 10 15 17 17
Time 1:12 8:06 20:42 35:21 48:24

Table 2. Performance of the hybridized Dynamic Oscillating Search wrapper FS method eval-
uated on waveform data, 40-dim., 2-class.

6. The Problem of Feature Selection Overfitting and Stability

In older literature the prevailing approach to FS method performance assessment was to eval-
uate the ability to find the optimum, or to get as close to it as possible, with respect to some
criterion function defined to distinguish classes in classification tasks or to fit data in approx-
imation tasks. Recently, emphasis is put on assessing the impact of FS on generalization per-
formance, i.e., the ability of the devised decision rule to perform well on independent data.
It has been shown that similarly to classifier over-training the effect of feature over-selection
can hinder the performance of pattern recognition system (Raudys (2006), Raudys (2006)); es-
pecially with small-sample or high-dimensional problems. Compare Figures 4 and 5 to see an
example of the effect.
It has been also pointed out that independent test data performance should not be neglected
when comparing FS methods (Reunanen (2003)). The task of FS methods’ comparison seems
to be understood ambiguously as well. It is very different whether we compare concrete
method properties or the final classifier performance determined by use of particular meth-
ods under particular settings. Certainly, final classifier performance is the ultimate quality
measure. However, misleading conclusions about FS may be easily drawn when evaluating
nothing else, as classifier performance depends on many more different aspects then just the
actual FS method used.
There seems to be a general agreement in literature that wrapper-based FS enables creation
of more accurate classifiers than filter-based FS. This claim is nevertheless to be taken with
caution, while using actual classifier accuracy as FS criterion in wrapper-based FS may lead
to the very negative effects mentioned above (overtraining). At the same time the weaker
relation of filter-based FS criterion functions to particular classifier accuracy may help better
generalization. But these effects can be hardly judged before the building of classification sys-
tem has actually been accomplished. The problem of classifier performance estimation is by
no means simple. Many estimation strategies are available, suitability of which is problem
dependent (re-substitution, data split, hold-out, cross-validation, leave-one-out, etc.). For a
detailed study on classifier training related problems and work-around methods, e.g., stabi-
lizing weak classifiers, see Skurichina (2001).

6.1 The Problem of Feature Selection Stability
It is common that classifier performance is considered the ultimate quality measure, even
when assessing the FS process. However, misleading conclusions may be easily drawn when
ignoring stability issues. Unstable FS performance may seriously deteriorate the properties of
the final classifier by selecting the wrong features. Following Kalousis et al. (2007) we define
the stability of the FS algorithm as the robustness of the feature preferences it produces to dif-
ferences in training sets drawn from the same generating distribution. FS algorithms express
the feature preferences in the form of a selected feature subset S ⊆ Y. Stability quantifies how

different training sets drawn from the same generating distribution affect the feature pref-
erences. Recent works in the area of FS methods’ stability mainly focus on various stability
indices, introducing measures based on Hamming distance, Dunne et al. (2002), correlation
coefficients and Tanimoto distance, Kalousis et al. (2007), consistency index, Kuncheva (2007)
and Shannon entropy, Křížek et al. (2007). Stability of FS procedures depends on the sample
size, the criteria utilized to perform FS, and the complexity of FS procedure, Raudys (2006).
In the following we focus on several new measures allowing to assess the FS stability of both
the d-parametrized and d-optimizing FS methods (Somol et al. (2008a)).

6.1.1 Considered Measures of Feature Selection Stability
Let S = {S1, . . . , Sn} be a system of n feature subsets Sj =

{
fki
| i = 1, . . . , dj, fki

∈ Y, dj ∈
{1, . . . , |Y|}

}
, j = 1, . . . , n, n > 1, n ∈ N, obtained from n runs of the evaluated FS algorithm

on different samplings of a given data set. Let X be the subset of Y representing all features
that appear anywhere in S :

X = { f | f ∈ Y, Ff > 0} =
n⋃

i=1
Si, X �= ∅, (18)

where Ff is the number of occurrences (frequency) of feature f ∈ Y in system S . Let N denote
the total number of occurrences of any feature in system S , i.e.,

N = ∑
g∈X

Fg =
n

∑
i=1

|Si|, N ∈ N, N ≥ n . (19)

Definition 5. The weighted consistency CW(S) of the system S is defined as

CW(S) = ∑
f∈X

w f
Ff − Fmin

Fmax − Fmin
, (20)

where w f =
Ff
N , 0 < w f ≤ 1, ∑ f∈X w f = 1.

Because Ff = 0 for all f ∈ Y \ X, the weighted consistency CW(S) can be equally expressed
using notation (19):

CW(S) = ∑
f∈X

Ff

N
·

Ff − Fmin

Fmax − Fmin
= ∑

f∈Y

Ff

N
·

Ff − 1
n − 1

. (21)

It is obvious that CW(S) = 0 if and only if (iff) N = |X|, i.e., iff Ff = 1 for all f ∈ X. This is
unrealistic in most of real cases. Whenever n > |X|, some feature must appear in more than
one subset and consequently CW(S) > 0. Similarly, CW(S) = 1 iff N = n|X|, otherwise all
subsets can not be identical.
Clearly, for any N, n representing some system of subsets S and for given Y there exists a
system Smin with such configuration of features in its subsets that yields the minimal possible
CW(·) value, to be denoted CWmin(N, n, Y), being possibly greater than 0. Similarly, a system
Smax exists that yields the maximal possible CW(·) value, to be denoted CWmax(N, n), being
possibly lower than 1.
It can be easily seen that CWmin(·) gets high when the sizes of feature subsets in system ap-
proach the total number of features |Y|, because in such system the subsets get necessarily
more similar to each other. Consequently, using measure (20) for comparison of the stability
of various FS methods may lead to misleading results if the methods tend to yield systems

of differently sized subsets. We will refer to this problem as to "the problem of subset-size
bias". Note that most of available stability measures are affected by the same problem. For
this reason we introduce another measure, to be called the relative weighted consistency, which
suppresses the influence of the sizes of subsets in system on the final value.

Definition 6. The relative weighted consistency CWrel(S , Y) of system S characterized by N, n
and for given Y is defined as

CWrel(S , Y) =
CW(S)− CWmin(N, n, Y)

CWmax(N, n)− CWmin(N, n, Y)
, (22)

where CWrel(S , Y) = CW(S) for CWmax(N, n) = CWmin(N, n, Y).
Denoting D = N mod |Y| and H = N mod n for simplicity, it has been shown in Somol et al.
(2008a) that

CWmin(N, n, Y) =
N2 − |Y|(N − D)− D2

|Y|N(n − 1)
(23)

and

CWmax(N, n) =
H2 + N(n − 1)− Hn

N(n − 1)
. (24)

The relative weighted consistency then becomes:

CWrel(S , Y) =
|Y|

(
N − D + ∑ f∈Y Ff (Ff − 1)

)
− N2 + D2

|Y| (H2 + n(N − H)− D)− N2 + D2 . (25)

The weighted consistency bounds CWmax(N, n) and CWmin(N, n, Y) are illustrated in Fig. 8.

Fig. 8. Illustration of CW measure bounds

Note that CWrel may be sensitive to small system changes if N approaches maximum (for
given |Y| and n).
It can be seen that for any N, n representing some system of subsets S and for given Y it is
true that 0 ≤ CWrel(S , Y) ≤ 1 and for the corresponding systems Smin and Smax it is true that
CWrel(Smin) = 0 and CWrel(Smax) = 1.
The measure (22) does not exhibit the unwanted behavior of yielding higher values for sys-
tems with subset sizes closer to |Y|, i.e., is independent of the size of feature subsets selected
by the examined FS methods under fixed Y. We can say that this measure characterizes for
given S , Y the relative degree of randomness of the system of feature subsets on the scale
between the maximum and minimum values of the weighted consistency (20).

Next, following the idea of Kalousis et al. (2007) we define a conceptually different measure.
It is derived from the Tanimoto index (coefficient) defined as the size of the intersection divided
by the size of union of the subsets Si and Sj, Duda et al. (2000):

SK(Si, Sj) =
|Si ∩ Sj|
|Si ∪ Sj|

. (26)

Definition 7. The Average Tanimoto Index of system S is defined as follows:

ATI(S) = 2
n(n − 1)

n−1

∑
i=1

n

∑
j=i+1

SK(Si, Sj) . (27)

ATI(S) is the average similarity measure over all pairs of feature subsets in S . It takes val-
ues from [0, 1] with 0 indicating empty intersection between all pairs of subsets Si, Sj and 1
indicating that all subsets of the system S are identical.

FS Classif. rate Subset size CW CW ATI FS time
Wrap. Meth. Mean S.Dv. Mean S.Dv. rel h:m:s

Gauss. rand .908 .059 14.90 8.39 .500 .008 .296 00:00:14
BIF� .948 .004 27.15 4.09 .927 .244 .862 00:04:57
SFS� .963 .003 11.95 5.30 .506 .181 .332 01:02:04
SFFS� .969 .003 12.17 4.66 .556 .259 .387 09:13:03
DOS .973 .002 8.85 2.36 .584 .419 .429 12:49:59

3NN rand .935 .061 14.9 8.30 .501 .009 .297 00:00:45
BIF� .970 .002 24.78 3.70 .912 .513 .840 00:38:39
SFS� .976 .002 15.45 5.74 .584 .148 .401 07:27:39
SFFS� .979 .002 17.96 5.67 .658 .149 .481 33:53:55
DOS .980 .001 13.27 4.25 .565 .227 .393 116:47:

SVM rand .942 .059 14.94 8.58 .502 .008 .295 00:00:50
BIF� .974 .003 21.67 2.71 .929 .774 .875 01:01:48
SFS� .982 .002 9.32 4.12 .433 .185 .283 07:13:02
SFFS� .983 .002 10.82 4.58 .472 .179 .310 30:28:02
DOS .985 .001 8.70 3.42 .442 .222 .295 74:28:51

Table 3. Stability of wrapper FS methods evaluated on wdbc data, 30-dim., 2-class.

6.1.2 Experiments With Stability Measures
To illustrate the discussed stability measures we have conducted several experiments on wdbc
data (30 dim., 2 classes: 357 benign and 212 malignant samples) from UCI Repository (Asun-
cion et al. (2007)). The results are collected in Table 3. We focused on comparing the stability
of principally different FS methods discussed in this chapter: BIF, SFS and SFFS and DOS in
d-optimizing setting; d-parametrized methods are run for each possible subset size to eventu-
ally select the subset size that yields the highest criterion value. To mark the difference from
standard d-parametrized course of search we denote these methods BIF�, SFS�and SFFS�. We
used the classification accuracy of three conceptually different classifiers as FS criteria: Gaus-
sian classifier, 3-Nearest Neighbor (majority voting) and SVM with RBF kernel (Chang et al.
(2001)). In each setup FS was repeated 1000× on randomly sampled 80% of the data (class size
ratios preserved). In each FS run the criterion was evaluated using 10-fold cross-validation,
with 2/3 of available data randomly sampled for training and the remaining 1/3 used for
testing.

Efficient Feature Subset Selection and Subset Size Optimization 19

of differently sized subsets. We will refer to this problem as to "the problem of subset-size
bias". Note that most of available stability measures are affected by the same problem. For
this reason we introduce another measure, to be called the relative weighted consistency, which
suppresses the influence of the sizes of subsets in system on the final value.

Definition 6. The relative weighted consistency CWrel(S , Y) of system S characterized by N, n
and for given Y is defined as

CWrel(S , Y) =
CW(S)− CWmin(N, n, Y)

CWmax(N, n)− CWmin(N, n, Y)
, (22)

where CWrel(S , Y) = CW(S) for CWmax(N, n) = CWmin(N, n, Y).
Denoting D = N mod |Y| and H = N mod n for simplicity, it has been shown in Somol et al.
(2008a) that

CWmin(N, n, Y) =
N2 − |Y|(N − D)− D2

|Y|N(n − 1)
(23)

and

CWmax(N, n) =
H2 + N(n − 1)− Hn

N(n − 1)
. (24)

The relative weighted consistency then becomes:

CWrel(S , Y) =
|Y|

(
N − D + ∑ f∈Y Ff (Ff − 1)

)
− N2 + D2

|Y| (H2 + n(N − H)− D)− N2 + D2 . (25)

The weighted consistency bounds CWmax(N, n) and CWmin(N, n, Y) are illustrated in Fig. 8.

Fig. 8. Illustration of CW measure bounds

Note that CWrel may be sensitive to small system changes if N approaches maximum (for
given |Y| and n).
It can be seen that for any N, n representing some system of subsets S and for given Y it is
true that 0 ≤ CWrel(S , Y) ≤ 1 and for the corresponding systems Smin and Smax it is true that
CWrel(Smin) = 0 and CWrel(Smax) = 1.
The measure (22) does not exhibit the unwanted behavior of yielding higher values for sys-
tems with subset sizes closer to |Y|, i.e., is independent of the size of feature subsets selected
by the examined FS methods under fixed Y. We can say that this measure characterizes for
given S , Y the relative degree of randomness of the system of feature subsets on the scale
between the maximum and minimum values of the weighted consistency (20).

Next, following the idea of Kalousis et al. (2007) we define a conceptually different measure.
It is derived from the Tanimoto index (coefficient) defined as the size of the intersection divided
by the size of union of the subsets Si and Sj, Duda et al. (2000):

SK(Si, Sj) =
|Si ∩ Sj|
|Si ∪ Sj|

. (26)

Definition 7. The Average Tanimoto Index of system S is defined as follows:

ATI(S) = 2
n(n − 1)

n−1

∑
i=1

n

∑
j=i+1

SK(Si, Sj) . (27)

ATI(S) is the average similarity measure over all pairs of feature subsets in S . It takes val-
ues from [0, 1] with 0 indicating empty intersection between all pairs of subsets Si, Sj and 1
indicating that all subsets of the system S are identical.

FS Classif. rate Subset size CW CW ATI FS time
Wrap. Meth. Mean S.Dv. Mean S.Dv. rel h:m:s

Gauss. rand .908 .059 14.90 8.39 .500 .008 .296 00:00:14
BIF� .948 .004 27.15 4.09 .927 .244 .862 00:04:57
SFS� .963 .003 11.95 5.30 .506 .181 .332 01:02:04
SFFS� .969 .003 12.17 4.66 .556 .259 .387 09:13:03
DOS .973 .002 8.85 2.36 .584 .419 .429 12:49:59

3NN rand .935 .061 14.9 8.30 .501 .009 .297 00:00:45
BIF� .970 .002 24.78 3.70 .912 .513 .840 00:38:39
SFS� .976 .002 15.45 5.74 .584 .148 .401 07:27:39
SFFS� .979 .002 17.96 5.67 .658 .149 .481 33:53:55
DOS .980 .001 13.27 4.25 .565 .227 .393 116:47:

SVM rand .942 .059 14.94 8.58 .502 .008 .295 00:00:50
BIF� .974 .003 21.67 2.71 .929 .774 .875 01:01:48
SFS� .982 .002 9.32 4.12 .433 .185 .283 07:13:02
SFFS� .983 .002 10.82 4.58 .472 .179 .310 30:28:02
DOS .985 .001 8.70 3.42 .442 .222 .295 74:28:51

Table 3. Stability of wrapper FS methods evaluated on wdbc data, 30-dim., 2-class.

6.1.2 Experiments With Stability Measures
To illustrate the discussed stability measures we have conducted several experiments on wdbc
data (30 dim., 2 classes: 357 benign and 212 malignant samples) from UCI Repository (Asun-
cion et al. (2007)). The results are collected in Table 3. We focused on comparing the stability
of principally different FS methods discussed in this chapter: BIF, SFS and SFFS and DOS in
d-optimizing setting; d-parametrized methods are run for each possible subset size to eventu-
ally select the subset size that yields the highest criterion value. To mark the difference from
standard d-parametrized course of search we denote these methods BIF�, SFS�and SFFS�. We
used the classification accuracy of three conceptually different classifiers as FS criteria: Gaus-
sian classifier, 3-Nearest Neighbor (majority voting) and SVM with RBF kernel (Chang et al.
(2001)). In each setup FS was repeated 1000× on randomly sampled 80% of the data (class size
ratios preserved). In each FS run the criterion was evaluated using 10-fold cross-validation,
with 2/3 of available data randomly sampled for training and the remaining 1/3 used for
testing.

The results are collected in Table 3. All measures, CW, CWrel and ATI indicate BIF�as the most
stable FS method, what confirms the conclusions in Kuncheva (2007). Note that CWrel is the
only measure to correctly detect random feature selection (values close to 0). Note that apart
from BIF�, with 3-NN and SVM the most stable FS method appears to be SFFS�, with Gaussian
classifier it is DOS. Very low CWrel values may indicate some pitfall in the FS process - either
there are no clearly preferable features in the set, or the methods overfit, etc. Note that low
stability measure values are often accompanied by higher deviations in subset size.

7. Summary

The current state of art in feature selection based dimensionality reduction for decision prob-
lems of classification type has been overviewed. A number of recent feature subset search
strategies have been reviewed and compared. Following the analysis of their respective ad-
vantages and shortcomings, the conditions under which certain strategies are more pertinent
than others have been suggested.
Concerning our current experience, we can give the following recommendations. Floating
Search can be considered the first tool to try for many FS tasks. It is reasonably fast and yields
generally very good results in all dimensions at once, often succeeding in finding the global
optimum. The Oscillating Search becomes better choice whenever: 1) the highest quality of
solution must be achieved but optimal methods are not applicable, or 2) a reasonable solution
is to be found as quickly as possible, or 3) numerical problems hinder the use of sequential
methods, or 4) extreme problem dimensionality prevents any use of sequential methods, or
5) the search is to be performed in real-time systems. Especially when repeated with different
random initial sets the Oscillating Search shows outstanding potential to overcome local ex-
tremes in favor of global optimum. Dynamic Oscillating Search adds to Oscillating Search the
ability to optimize both the subset size and subset contents at once.
No FS method, however, can be claimed the best for all problems. Moreover, any FS method
should be applied cautiously to prevent the negative effects of feature over-selection (over-
training) and to prevent stability issues.
Remark: Source codes can be partly found at http://ro.utia.cas.cz/dem.html.

7.1 Does It Make Sense to Develop New FS Methods?
Our answer is undoubtedly yes. Our current experience shows that no clear and unambigu-
ous qualitative hierarchy can be established within the existing framework of methods, i.e.,
although some methods perform better then others more often, this is not the case always and
any method can show to be the best tool for some particular problem. Adding to this pool of
methods may thus bring improvement, although it is more and more difficult to come up with
new ideas that have not been utilized before. Regarding the performance of search algorithms
as such, developing methods that yield results closer to optimum with respect to any given
criterion may bring considerably more advantage in future, when better criteria may have
been found to better express the relation between feature subsets and classifier generalization
ability.

8. Acknowledgements

The work has been supported by projects AV0Z1075050506 of the GAAV CR, GAČR
102/08/0593, 102/07/1594 and CR MŠMT grants 2C06019 ZIMOLEZ and 1M0572 DAR.

9. References

Asuncion, A. & Newman, D. (2007). UCI machine learning repository,
http://www.ics.uci.edu/ ∼mlearn/ mlrepository.html.

Blum, A. & Langley, P. (1997). Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1-2), 245–271.

Chang, C.-C. & Lin, C.-J. (2001). LIBSVM: a library for SVM. http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

Das, S. (2001). Filters, wrappers and a boosting-based hybrid for feature selection. In Proc. of
the 18th International Conference on Machine Learning pp. 74–81.

Dash, M.; Choi, K.; P., S., & Liu, H. (2002). Feature selection for clustering - a filter solution. In
Proceedings of the Second International Conference on Data Mining pp. 115–122.

Devijver, P. A. & Kittler, J. (1982). Pattern Recognition: A Statistical Approach. Englewood Cliffs,
London, UK: Prentice Hall.

Duda, R. O.; Hart, P. E., & Stork, D. G. (2000). Pattern Classification (2nd Edition). Wiley-
Interscience.

Dunne, K.; Cunningham, P., & Azuaje, F. (2002). Solutions to Instability Problems with Sequen-
tial Wrapper-based Approaches to Feature Selection. Technical Report TCD-CS-2002-28,
Trinity College Dublin, Department of Computer Science.

Ferri, F. J.; Pudil, P.; Hatef, M., & Kittler, J. (1994). Comparative study of techniques for large-
scale feature selection. Machine Intelligence and Pattern Recognition, 16.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition (2nd ed.). San Diego, CA,
USA: Academic Press Professional, Inc.

Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach.
Learn. Res., 3, 1157–1182.

Hussein, F.; Ward, R., & Kharma, N. (2001). Genetic algorithms for feature selection and
weighting, a review and study. icdar, 00, 1240.

Jain, A. & Zongker, D. (1997). Feature selection: Evaluation, application, and small sample
performance. IEEE Trans. Pattern Anal. Mach. Intell., 19(2), 153–158.

Jain, A. K.; Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE
Trans. Pattern Anal. Mach. Intell., 22(1), 4–37.

Jensen, R. (2006). Performing Feature Selection with ACO, volume 34 of Studies in Computational
Intelligence, pp. 45–73. Springer Berlin / Heidelberg.

Kalousis, A.; Prados, J., & Hilario, M. (2007). Stability of feature selection algorithms: A study
on high-dimensional spaces. Knowledge and Information Systems, 12(1), 95–116.

Kohavi, R. & John, G. (1997a). Wrappers for feature subset selection. Artificial Intelligence, 97,
273–324.

Kohavi, R. & John, G. H. (1997b). Wrappers for feature subset selection. Artif. Intell., 97(1-2),
273–324.

Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In ECML-94:
Proc. European Conf. on Machine Learning pp. 171–182. Secaucus, NJ, USA: Springer-
Verlag New York, Inc.

Křížek, P.; Kittler, J., & Hlaváč, V. (2007). Improving stability of feature selection methods. In
Proc. 12th Int. Conf. on Computer Analysis of Images and Patterns, volume LNCS 4673
pp. 929–936. Berlin / Heidelberg, Germany: Springer-Verlag.

Kudo, M. & Sklansky, J. (2000). Comparison of algorithms that select features for pattern
classifiers. Pattern Recognition, 33(1), 25–41.

Efficient Feature Subset Selection and Subset Size Optimization 21

The results are collected in Table 3. All measures, CW, CWrel and ATI indicate BIF�as the most
stable FS method, what confirms the conclusions in Kuncheva (2007). Note that CWrel is the
only measure to correctly detect random feature selection (values close to 0). Note that apart
from BIF�, with 3-NN and SVM the most stable FS method appears to be SFFS�, with Gaussian
classifier it is DOS. Very low CWrel values may indicate some pitfall in the FS process - either
there are no clearly preferable features in the set, or the methods overfit, etc. Note that low
stability measure values are often accompanied by higher deviations in subset size.

7. Summary

The current state of art in feature selection based dimensionality reduction for decision prob-
lems of classification type has been overviewed. A number of recent feature subset search
strategies have been reviewed and compared. Following the analysis of their respective ad-
vantages and shortcomings, the conditions under which certain strategies are more pertinent
than others have been suggested.
Concerning our current experience, we can give the following recommendations. Floating
Search can be considered the first tool to try for many FS tasks. It is reasonably fast and yields
generally very good results in all dimensions at once, often succeeding in finding the global
optimum. The Oscillating Search becomes better choice whenever: 1) the highest quality of
solution must be achieved but optimal methods are not applicable, or 2) a reasonable solution
is to be found as quickly as possible, or 3) numerical problems hinder the use of sequential
methods, or 4) extreme problem dimensionality prevents any use of sequential methods, or
5) the search is to be performed in real-time systems. Especially when repeated with different
random initial sets the Oscillating Search shows outstanding potential to overcome local ex-
tremes in favor of global optimum. Dynamic Oscillating Search adds to Oscillating Search the
ability to optimize both the subset size and subset contents at once.
No FS method, however, can be claimed the best for all problems. Moreover, any FS method
should be applied cautiously to prevent the negative effects of feature over-selection (over-
training) and to prevent stability issues.
Remark: Source codes can be partly found at http://ro.utia.cas.cz/dem.html.

7.1 Does It Make Sense to Develop New FS Methods?
Our answer is undoubtedly yes. Our current experience shows that no clear and unambigu-
ous qualitative hierarchy can be established within the existing framework of methods, i.e.,
although some methods perform better then others more often, this is not the case always and
any method can show to be the best tool for some particular problem. Adding to this pool of
methods may thus bring improvement, although it is more and more difficult to come up with
new ideas that have not been utilized before. Regarding the performance of search algorithms
as such, developing methods that yield results closer to optimum with respect to any given
criterion may bring considerably more advantage in future, when better criteria may have
been found to better express the relation between feature subsets and classifier generalization
ability.

8. Acknowledgements

The work has been supported by projects AV0Z1075050506 of the GAAV CR, GAČR
102/08/0593, 102/07/1594 and CR MŠMT grants 2C06019 ZIMOLEZ and 1M0572 DAR.

9. References

Asuncion, A. & Newman, D. (2007). UCI machine learning repository,
http://www.ics.uci.edu/ ∼mlearn/ mlrepository.html.

Blum, A. & Langley, P. (1997). Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1-2), 245–271.

Chang, C.-C. & Lin, C.-J. (2001). LIBSVM: a library for SVM. http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

Das, S. (2001). Filters, wrappers and a boosting-based hybrid for feature selection. In Proc. of
the 18th International Conference on Machine Learning pp. 74–81.

Dash, M.; Choi, K.; P., S., & Liu, H. (2002). Feature selection for clustering - a filter solution. In
Proceedings of the Second International Conference on Data Mining pp. 115–122.

Devijver, P. A. & Kittler, J. (1982). Pattern Recognition: A Statistical Approach. Englewood Cliffs,
London, UK: Prentice Hall.

Duda, R. O.; Hart, P. E., & Stork, D. G. (2000). Pattern Classification (2nd Edition). Wiley-
Interscience.

Dunne, K.; Cunningham, P., & Azuaje, F. (2002). Solutions to Instability Problems with Sequen-
tial Wrapper-based Approaches to Feature Selection. Technical Report TCD-CS-2002-28,
Trinity College Dublin, Department of Computer Science.

Ferri, F. J.; Pudil, P.; Hatef, M., & Kittler, J. (1994). Comparative study of techniques for large-
scale feature selection. Machine Intelligence and Pattern Recognition, 16.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition (2nd ed.). San Diego, CA,
USA: Academic Press Professional, Inc.

Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach.
Learn. Res., 3, 1157–1182.

Hussein, F.; Ward, R., & Kharma, N. (2001). Genetic algorithms for feature selection and
weighting, a review and study. icdar, 00, 1240.

Jain, A. & Zongker, D. (1997). Feature selection: Evaluation, application, and small sample
performance. IEEE Trans. Pattern Anal. Mach. Intell., 19(2), 153–158.

Jain, A. K.; Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE
Trans. Pattern Anal. Mach. Intell., 22(1), 4–37.

Jensen, R. (2006). Performing Feature Selection with ACO, volume 34 of Studies in Computational
Intelligence, pp. 45–73. Springer Berlin / Heidelberg.

Kalousis, A.; Prados, J., & Hilario, M. (2007). Stability of feature selection algorithms: A study
on high-dimensional spaces. Knowledge and Information Systems, 12(1), 95–116.

Kohavi, R. & John, G. (1997a). Wrappers for feature subset selection. Artificial Intelligence, 97,
273–324.

Kohavi, R. & John, G. H. (1997b). Wrappers for feature subset selection. Artif. Intell., 97(1-2),
273–324.

Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In ECML-94:
Proc. European Conf. on Machine Learning pp. 171–182. Secaucus, NJ, USA: Springer-
Verlag New York, Inc.

Křížek, P.; Kittler, J., & Hlaváč, V. (2007). Improving stability of feature selection methods. In
Proc. 12th Int. Conf. on Computer Analysis of Images and Patterns, volume LNCS 4673
pp. 929–936. Berlin / Heidelberg, Germany: Springer-Verlag.

Kudo, M. & Sklansky, J. (2000). Comparison of algorithms that select features for pattern
classifiers. Pattern Recognition, 33(1), 25–41.

Kuncheva, L. I. (2007). A stability index for feature selection. In Proc. 25th IASTED International
Multi-Conference AIAP’07 pp. 390–395. Anaheim, CA, USA: ACTA Press.

Liu, H. & Yu, L. (2005). Toward integrating feature selection algorithms for classification and
clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491–502.

McLachlan, G. J. (2004). Discriminant analysis and statistical pattern recognition. Wiley-IEEE.
Nakariyakul, S. & Casasent, D. P. (2007). Adaptive branch and bound algorithm for selecting

optimal features. Pattern Recogn. Lett., 28(12), 1415–1427.
Nakariyakul, S. & Casasent, D. P. (2009). An improvement on floating search algorithms for

feature subset selection. Pattern Recognition, 42(9), 1932–1940.
Novovičová, J.; Pudil, P., & Kittler, J. (1996). Divergence based feature selection for multimodal

class densities. IEEE Trans. Pattern Anal. Mach. Intell., 18(2), 218–223.
Novovičová, J.; Somol, P., & Pudil, P. (2006). Oscillating feature subset search algorithm for

text categorization. In Structural, Syntactic, and Statistical Pattern Recognition, volume
LNCS 4109 pp. 578–587. Berlin / Heidelberg, Germany: Springer-Verlag.

Pudil, P.; Novovičová, J., & Kittler, J. (1994). Floating search methods in feature selection.
Pattern Recogn. Lett., 15(11), 1119–1125.

Pudil, P.; Novovičová, J.; Choakjarernwanit, N., & Kittler, J. (1995). Feature selection based on
approximation of class densities by finite mixtures of special type. Pattern Recognition,
28, 1389–1398.

Raudys, Š. J. (2006). Feature over-selection. In Structural, Syntactic, and Statistical Pattern Recog-
nition, volume LNCS 4109 pp. 622–631. Berlin / Heidelberg, Germany: Springer-
Verlag.

Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods.
J. Mach. Learn. Res., 3, 1371–1382.

Ripley, B. D., Ed. (2005). Pattern Recognition and Neural Networks. Cambridge University Press,
8 edition.

Saeys, Y.; naki Inza, I., & naga, P. L. (2007). A review of feature selection techniques in bioin-
formatics. Bioinformatics, 23(19), 2507–2517.

Salappa, A.; Doumpos, M., & Zopounidis, C. (2007). Feature selection algorithms in classifica-
tion problems: An experimental evaluation. Optimization Methods and Software, 22(1),
199–212.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing
Surveys, 34(1), 1–47.

Sebban, M. & Nock, R. (2002). A hybrid filter/wrapper approach of feature selection using
information theory. Pattern Recognition, 35, 835–846.

Siedlecki, W. & Sklansky, J. (1993). On automatic feature selection, pp. 63–87. World Scientific
Publishing Co., Inc.: River Edge, NJ, USA.

Skurichina, M. (2001). Stabilizing Weak Classifiers. PhD thesis, Pattern Recognition Group, Delft
University of Technology, Netherlands.

Somol, P.; Novovičová, J., & Pudil, P. (2006). Flexible-hybrid sequential floating search in
statistical feature selection. In Structural, Syntactic, and Statistical Pattern Recognition,
volume LNCS 4109 pp. 632–639. Berlin / Heidelberg, Germany: Springer-Verlag.

Somol, P. & Novovičová, J. (2008a). Evaluating the stability of feature selectors that optimize
feature subset cardinality. In Structural, Syntactic, and Statistical Pattern Recognition,
volume LNCS 5342 pp. 956–966.

Somol, P.; Novovičová, J.; Grim, J., & Pudil, P. (2008b). Dynamic oscillating search algorithms
for feature selection. In ICPR 2008 Los Alamitos, CA, USA: IEEE Computer Society.

Somol, P. & Pudil, P. (2000). Oscillating search algorithms for feature selection. In ICPR 2000,
volume 02 pp. 406–409. Los Alamitos, CA, USA: IEEE Computer Society.

Somol, P.; Pudil, P., & Kittler, J. (2004). Fast branch & bound algorithms for optimal feature
selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(7), 900–912.

Somol, P.; Pudil, P.; Novovičová, J., & Paclík, P. (1999). Adaptive floating search methods in
feature selection. Pattern Recogn. Lett., 20(11-13), 1157–1163.

Theodoridis, S. & Koutroumbas, K. (2006). Pattern Recognition. USA: Academic Press, 3rd
edition.

Tsamardinos, I. & Aliferis, C. F. (2003). Towards principled feature selection: Relevancy, filters,
and wrappers. In 9th Int. Workshop on Artificial Intelligence and Statistics (AI&Stats
2003) Key West, FL.

Vafaie, H. & Imam, I. F. (1994). Feature selection methods: Genetic algorithms vs. greedy-like
search. In Proc. Int. Conf. on Fuzzy and Intelligent Control Systems.

Webb, A. R. (2002). Statistical Pattern Recognition (2nd Edition). John Wiley and Sons Ltd.
Whitney, A. W. (1971). A direct method of nonparametric measurement selection. IEEE Trans.

Comput., 20(9), 1100–1103.
Xing, E. P. (2003). Feature Selection in Microarray Analysis, pp. 110–129. Springer.
Yang, J. & Honavar, V. G. (1998). Feature subset selection using a genetic algorithm. IEEE

Intelligent Systems, 13(2), 44–49.
Yang, Y. & Pedersen, J. O. (1997). A comparative study on feature selection in text categoriza-

tion. In ICML ’97: Proc. 14th Int. Conf. on Machine Learning pp. 412–420. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Yu, L. & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based
filter solution. In Proceedings of the 20th International Conference on Machine Learning
pp. 56–63.

Yusta, S. C. (2009). Different metaheuristic strategies to solve the feature selection problem.
Pattern Recogn. Lett., 30(5), 525–534.

Zhang, H. & Sun, G. (2002). Feature selection using tabu search method. Pattern Recognition,
35, 701–711.

Efficient Feature Subset Selection and Subset Size Optimization 23

Kuncheva, L. I. (2007). A stability index for feature selection. In Proc. 25th IASTED International
Multi-Conference AIAP’07 pp. 390–395. Anaheim, CA, USA: ACTA Press.

Liu, H. & Yu, L. (2005). Toward integrating feature selection algorithms for classification and
clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491–502.

McLachlan, G. J. (2004). Discriminant analysis and statistical pattern recognition. Wiley-IEEE.
Nakariyakul, S. & Casasent, D. P. (2007). Adaptive branch and bound algorithm for selecting

optimal features. Pattern Recogn. Lett., 28(12), 1415–1427.
Nakariyakul, S. & Casasent, D. P. (2009). An improvement on floating search algorithms for

feature subset selection. Pattern Recognition, 42(9), 1932–1940.
Novovičová, J.; Pudil, P., & Kittler, J. (1996). Divergence based feature selection for multimodal

class densities. IEEE Trans. Pattern Anal. Mach. Intell., 18(2), 218–223.
Novovičová, J.; Somol, P., & Pudil, P. (2006). Oscillating feature subset search algorithm for

text categorization. In Structural, Syntactic, and Statistical Pattern Recognition, volume
LNCS 4109 pp. 578–587. Berlin / Heidelberg, Germany: Springer-Verlag.

Pudil, P.; Novovičová, J., & Kittler, J. (1994). Floating search methods in feature selection.
Pattern Recogn. Lett., 15(11), 1119–1125.

Pudil, P.; Novovičová, J.; Choakjarernwanit, N., & Kittler, J. (1995). Feature selection based on
approximation of class densities by finite mixtures of special type. Pattern Recognition,
28, 1389–1398.

Raudys, Š. J. (2006). Feature over-selection. In Structural, Syntactic, and Statistical Pattern Recog-
nition, volume LNCS 4109 pp. 622–631. Berlin / Heidelberg, Germany: Springer-
Verlag.

Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods.
J. Mach. Learn. Res., 3, 1371–1382.

Ripley, B. D., Ed. (2005). Pattern Recognition and Neural Networks. Cambridge University Press,
8 edition.

Saeys, Y.; naki Inza, I., & naga, P. L. (2007). A review of feature selection techniques in bioin-
formatics. Bioinformatics, 23(19), 2507–2517.

Salappa, A.; Doumpos, M., & Zopounidis, C. (2007). Feature selection algorithms in classifica-
tion problems: An experimental evaluation. Optimization Methods and Software, 22(1),
199–212.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing
Surveys, 34(1), 1–47.

Sebban, M. & Nock, R. (2002). A hybrid filter/wrapper approach of feature selection using
information theory. Pattern Recognition, 35, 835–846.

Siedlecki, W. & Sklansky, J. (1993). On automatic feature selection, pp. 63–87. World Scientific
Publishing Co., Inc.: River Edge, NJ, USA.

Skurichina, M. (2001). Stabilizing Weak Classifiers. PhD thesis, Pattern Recognition Group, Delft
University of Technology, Netherlands.

Somol, P.; Novovičová, J., & Pudil, P. (2006). Flexible-hybrid sequential floating search in
statistical feature selection. In Structural, Syntactic, and Statistical Pattern Recognition,
volume LNCS 4109 pp. 632–639. Berlin / Heidelberg, Germany: Springer-Verlag.

Somol, P. & Novovičová, J. (2008a). Evaluating the stability of feature selectors that optimize
feature subset cardinality. In Structural, Syntactic, and Statistical Pattern Recognition,
volume LNCS 5342 pp. 956–966.

Somol, P.; Novovičová, J.; Grim, J., & Pudil, P. (2008b). Dynamic oscillating search algorithms
for feature selection. In ICPR 2008 Los Alamitos, CA, USA: IEEE Computer Society.

Somol, P. & Pudil, P. (2000). Oscillating search algorithms for feature selection. In ICPR 2000,
volume 02 pp. 406–409. Los Alamitos, CA, USA: IEEE Computer Society.

Somol, P.; Pudil, P., & Kittler, J. (2004). Fast branch & bound algorithms for optimal feature
selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(7), 900–912.

Somol, P.; Pudil, P.; Novovičová, J., & Paclík, P. (1999). Adaptive floating search methods in
feature selection. Pattern Recogn. Lett., 20(11-13), 1157–1163.

Theodoridis, S. & Koutroumbas, K. (2006). Pattern Recognition. USA: Academic Press, 3rd
edition.

Tsamardinos, I. & Aliferis, C. F. (2003). Towards principled feature selection: Relevancy, filters,
and wrappers. In 9th Int. Workshop on Artificial Intelligence and Statistics (AI&Stats
2003) Key West, FL.

Vafaie, H. & Imam, I. F. (1994). Feature selection methods: Genetic algorithms vs. greedy-like
search. In Proc. Int. Conf. on Fuzzy and Intelligent Control Systems.

Webb, A. R. (2002). Statistical Pattern Recognition (2nd Edition). John Wiley and Sons Ltd.
Whitney, A. W. (1971). A direct method of nonparametric measurement selection. IEEE Trans.

Comput., 20(9), 1100–1103.
Xing, E. P. (2003). Feature Selection in Microarray Analysis, pp. 110–129. Springer.
Yang, J. & Honavar, V. G. (1998). Feature subset selection using a genetic algorithm. IEEE

Intelligent Systems, 13(2), 44–49.
Yang, Y. & Pedersen, J. O. (1997). A comparative study on feature selection in text categoriza-

tion. In ICML ’97: Proc. 14th Int. Conf. on Machine Learning pp. 412–420. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Yu, L. & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based
filter solution. In Proceedings of the 20th International Conference on Machine Learning
pp. 56–63.

Yusta, S. C. (2009). Different metaheuristic strategies to solve the feature selection problem.
Pattern Recogn. Lett., 30(5), 525–534.

Zhang, H. & Sun, G. (2002). Feature selection using tabu search method. Pattern Recognition,
35, 701–711.

